京公网安备 11010802034615号
经营许可证编号:京B2-20210330
10个商业活动中需要的数据分析工具_数据分析师
虽然收集和分析“大数据”存在一些分析和技术方面的挑战,但事实上大部分公司已经能够应对这种挑战。这是因为有一些非常强大的分析工具都是免费、开源的,可以充分利用这些工具来提升自己的能力。
Alex Jones推荐了10个针对企业的大数据分析工具,这些工具不仅免费、使用方便,而且具有强大的功能和良好的资源。
1、Tableau Public
这是一个简单直观的可视化工具。它在商业活动中表现的很强大,因为它通过可视化来表达。它有足够的空间和免费使用时长让你体验,在分析的过程中,Tableau的图片呈现可以让你快速的调查一个假设、验证你的直觉,做更好的商业决策。
2、OpenRefine
它是以前的GoogleRefine,OpenRefine是一款数据清理软件,可以对准备好的一切数据进行分析。例如最近我清理了一个含有化学名称的数据库,并且各行有不同的拼写、大小写、空格等,用计算机来处理非常困难,幸运的是, OpenRefine包含许多聚类算法,对这个问题可以快速解决。
3、KNIME
KNIME可以通过可视化编程的方式来操作、分析和建模。不仅可以写代码。你还可以在操作中建立联系节点。基本上你只需要将功能模块拖拽到工作区,并将模块按照运行流程连接起来,就可以实现以往编程才能实现的工作。更重要的是,KNIME可以扩展到运行R, python, text mining,chemistry data等等,这可以让你选择用更先进的编码来分析。
Tip:读取CSV文件时需要用“File Reader”代替CSV阅读器。
4、RapidMiner
和KNIME类似, RapidMiner通过可视化编程操作,建模和分析数据。最近,RapidMiner赢得kdnuggets的软件调查。
5、GoogleFusion Tables
这是针对数据分析、大数据集的可视化和映射的一个非常强大的工具,谷歌的地图软件在其中起着重要作用。拿下面这张图来说,这是一张墨西哥湾石油生产平台的图,我只需要上传数据,Google Fusion Tables确认维度和经度的数据之后就开始工作了。
6、NodeXL
NodeXL是针对网络和关系的可视化分析软件。想想科技巨头地图上代表LinkedIn或Facebook的连接,NodeXL提供了进一步精确的计算。如果你在不需要那么先进的东西,你可以看看Google Fusion Tables,或者尝试用Gephi。
7、import.io
从网上抓取网页和信息曾经是技术人员的专利,现在用import.io,每个人都可以从网站和论坛获取数据。简单提出你想要的数据,几分钟之后import.io就可以通过你的搜索知道你在找什么,从而会挖掘、提供数据用于你的分析或输出。
8、Google Search Operators
不可否认谷歌最初是一个强大的资源和搜索公司,运营商可以让你快速过滤掉谷歌的结果得到的最有用的和相关的信息。比如说,你正想从ABC咨询里寻找一个今年的数据科学报告。如果我们认为该报告可能是PDF格式的,可以搜索
“数据科学报告”网站::ABCConsulting.com Filetype:PDF
然后在下面的搜索栏,使用“搜索工具”来屏蔽去年的结果。这在发现新的信息或市场研究方面非常有用。
9、Solver
Solver是一个在excel中做优化和线性规划的工具,允许你设置一些约束条件(例如不超过什么价格,要在哪天之前完成之类)。虽然更有效的优化可能会需要另一个程序(例如R的优化包),但是Solver应用范围比较广。
10、WolframAlpha
Wolfram Alpha的搜索引擎是一个隐藏的宝石,可以媲美苹果的Siri。WolframAlpha类似于不那么智能的Google,对科技搜索提供详细的回复,对微积分作用也能快速的搜索。对企业用户来说,它提供了信息图表,对历史价格、商品信息、主题概述。
虽然这些工具使得分析更简单,但他们只是把信息放进去然后进行分析,这些你自己也可以做到。所以用一点时间来学习新的技巧,用这些工具来提高自己完成工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31