
大数据价值:分析为王_数据分析师
大数据对于企业成功所起到的关键性作用在各行各业都正飞速显现出来,但是在高管人员看来,很多企业并未完全准备好利用这一趋势以实现大数据价值的最大化。贝恩公司对来自世界各地的400多家年收入超过10亿美元的企业的高管进行了访谈,并与他们深入地探讨了所在公司在数据收集和分析能力、决策速度以及效率等各方面的表现。
访谈结果令人吃惊:仅有4%的企业被认为真正擅长于大数据分析—— 他们能够围绕设定的业务重心调动合适的人员,使用有效的工具并收集合理的数据,并根据大数据分析的发现改变企业运作的方式或者提高产品和服务。与竞争对手相比,这部分擅长大数据分析的企业的表现差异显而易见:
他们的绩效处于同业前四分之一的可能性为一般企业的两倍
他们的决策速度比一般企业快出五倍
他们的决策执行速度比一般企业快出三倍
正如我们在《大数据:组织性挑战》一书中所指出的,想要在大数据竞争中处于领先地位,三个步骤不可或缺:设定目标、建立分析能力以及围绕大数据策略组织企业架构以实现价值最大化。本文将主要针对第二步,了解那些领先的企业是如何利用大数据的竞争优势走在行业的最前沿的。
1、数据、工具、人员和决心
领先的企业主要从四个方面入手建立自己的大数据分析能力:高质量的数据、先进的工具、精通数据的员工以及支持分析决策的流程和激励机制。大约有三分之一的企业这四方面的表现均不理想,而更多企业则在其中一两个领域较为突出。但出色的大数据分析能力是建立在这四个方面均衡的完美表现之上。每个方面的成功都离不开其他方面的优势支持。
数据。任何一个企业都首先需要制定一个数据收集和整理的策略规划,这一规划必须明确定义如何利用大数据为企业的整体发展战略创造价值。在本次的访谈中我们发现,约有56%的企业缺乏合适的系统来收集其发展所需的数据,约有66%的企业则未以有效的形式存储其所收集的数据。
好的数据政策明确定义了“什么是有用的数据”以及“如何从数据看我们的业务”。这些基本定义是一个企业如何建立自己的数据分析能力并将自己与竞争对手区隔开来的第一步。“什么是有用的数据”是所有数据政策的出发点和基础。举例而言,收集所有来自公司网站、客服电话、电子邮件以及聊天室的客户询问可以帮助公司了解客户反馈的最新动向;但那些关于已经被快速处理完毕的询问的具体记录能够带来的价值就非常有限了。
工具。先进的分析技术和大数据工具的进步如此之快,他们正以前所未有的方式帮助公司获取新的统计角度和结果。Hadoop、HPCC和NoSQL等工具和平台迅速崛起带来了全新的分析视角和机会;基于成熟的分析、视觉化以及数据管理的全新生态系统也以日新月异的速度改变着企业的分析能力。如今,可提供这类工具的供应商不胜枚举,开放资源的开发商数量更是不计其数。不过,令人感到些许意外的是,在我们的访谈中,仅有38%的企业表示他们曾使用过这些工具。
人员。在我们的调查中,有56%的高管人员表示他们的企业缺乏分析数据并从数据中发现机遇的慧眼。大多数人则认为他们无法准确地判断那些从数据分析的得出的林林总总的结论是否的确与公司的业务密切相关,亦难以对这些纷繁芜杂的结论进行优先排序。成功的团队往往可以融合数据、技术和业务等各方面的人才来构建这一能力。以乐队为类比:团队的成员必须各自拥有不同的技能,但这些技能又有一些交叉重叠,同时他们非常了解互相之间如何进行有效和高效的沟通和协作。成功的大数据分析团队亦如此,我们需要:
- 数据科学家,提供有关统计、相关性和质量等的专业技能
- 商业分析师,从商业的角度出发甄别数据科学家从纯粹数据分析角度发现的异常数据以及一般性规律,发掘出其中与公司业务发展紧密相关的数据和规律并根据重要性进行排序
- 技术专家,帮助提供收集、整理和处理数据所需的硬件和软件解决方案
决心。顶尖的企业将大数据分析的理念植入到组织当中,明确定义希望通过大数据达成的目标并运用数据推动决策。CEO和高层领导团队将枯燥抽象的数据分析与实际的公司经营绩效提升的紧密关系展示给企业的每一位员工:不论是通过改进现有的产品和服务、优化内部流程、构建新产品和服务或是转变商业模式等等。表现优异的公司无一例外地围绕数据构建组织并恪守数据驱动型决策的承诺。
在如何围绕先进的大数据分析方法建立并推动全新的商业模式的发展方面,Nest公司是个中翘楚。在恒温器产业,结合先进的电子技术让用户通过互联网界面或智能手机对室内恒温器进行远程遥控的做法已经十分普遍。Nest则在此基础上 更进一步,他们跟踪并收集用户调节恒温器调的使用习惯:用户在何时调整以及如何调整恒温器以将室内温度保持在自己觉得舒适宜人的水平上。Nest将这些信息储存在云端,并将用户的使用习惯与其所在的地点、气候以及住宅类型等其他变量进行相关分析,并基于这些分析的结果预测用户的恒温器设置需求,从而主动为用户创造更舒适的家居环境。
为了在数据、工具、人员和决心四个方面均取得卓越表现,企业往往必须做出巨大改变,进行重大投资甚至有时变更领导人。但是仅仅关注其中某一个方面而忽略其他的方面的投资结果往往难尽如人意:如果数据质量不高,工具将难以起到作用;而如果企业并不致力于将大数据的发现用于实际的业务中,人才也会流失。 正如引擎需要多个活塞的协同运作,上述四个方面也必须互相协调发展方能表现出色。
2、机会与紧迫感并存
通过引入先进的数据分析超越竞争对手的机会真实存在——那些业绩领先的企业在大数据的各个方面也往往表现卓越:他们采用先进的手段获取、收集和存储数据,并对数据进行剖析从中汲取真知灼见。
有些行业在大数据这条路上比其他行业走得更远,例如金融服务、高科技和医疗保健行业等等。他们依托自己强大的数据分析能力洞察客户的需求并制定决策。而大数据分析的佼佼者们甚至从大数据分析的结果出发重新定义行业的竞争标准和商业模式。
这样的机会其实存在于每个行业之中。以一家邮购药店企业为例,通过分析成千上万的客户服务记录,公司发现客户在服药疗程的75天和105天之间拨通客服电话的数量到达顶峰。在进一步研究之后,分析师发现客户的电话与药物续订的日期之间密切相关。而且其中的部分客户由于其服用的药物剂量不停的变化,所以拨打电话要求续订药物的预留时间往往很短。了解数据变动背后的原因之后,药店开始在客户用药后的30和60天左右时主动电话询问客户的药物存量,从而更好地帮助客户预测何时应当续订药物。新做法去除了临时回复客户电话过程中资料信息匹配的冗长过程,大大提高了客户的满意度,同时也减少了费用昂贵的“紧急”药物续订订单。
在任何一个特定的行业,总有部门能够从大数据分析中获益。例如对于呼叫中心,如果其能够迅速调用并匹配事先了解和掌握的呼叫者信息,客服电话将变得更加高效。长久以来,通过顾客ID识别贵宾顾客并将他们的电话转接给高级客服代表的服务方式对于航空公司已经是司空见惯的服务模式。依托大数据平台,航空公司可以做得更多: 例如根据ID匹配客户预定的航班以及航班状态——这些信息可以帮助客服代表预判顾客为什么会打来电话,甚至在第二声电话铃响之前就已经做好准备更好地满足客户的需求。
例如,如果客户的下一个航班延迟了,客服代表在接电话时就能预判客户将要咨询航班预计起飞时间或者能否准时赶上转接航班等问题。更深入的数据分析的方法则可以将把顾客的ID与社交媒体相挂钩。如果顾客刚在推特(twitter)上抱怨了航班延迟,航空公司的客服代表在接起电话前可能就已经读过这条消息并了解顾客的状态了。更进一步的数据分析则可以与其他新技术相结合:情绪分析技术可以在通话时识别顾客的情绪状态,这样 一位已经很恼火的顾客就可以被转接给一位态度温和的客服代表。
从先进的大数据分析中获得竞争优势,已不再是高科技公司或数据密集型行业的专利。如今,这在各个行业随处可见:根据贝恩公司的调查结果,能够更好地利用大数据并积极投资提高相应数据分析能力的公司在财务表现方面往往胜于同行。等待观望的态度对于任何一个想要保持竞争力的公司来说都可能是致命的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29