
大数据是扭转国内医患关系尴尬局面的唯一办法
所谓“大数据”就是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。现在,随着科技的不断发展,大数据已经在不知不觉中融入了我们的生活,通信、金融、教育、医疗、军事、电子商务甚至政府决策等几乎所有的领域,尤其在医疗领域的应用越来越多,因此,大数据技术在医疗领域的项目管理逐渐引起人们的重视。
我国人口众多,我们的人口是美国的4.4倍,而医生数只约为美国的两倍,医患之间供不应求。每天因为疾病进出医院的人不计其数。随着医院门诊量和住院人数的不断增多,医疗数据量也变得无比庞大。医疗数据被安全地存储非常关键,谁也不希望自己的诊疗病例转眼就不见了。
大数据医疗当前的市场趋势
根据R&R的一份市场调查报告,仅在医疗健康领域,Big Data从2012到2017年的增长率能够达到23.7%,市场总量达到108亿美元。
根据IBM提供的数据,上海市卫生信息系统,每天生产1000万条数据、已建立起3000万电子健康档案、每天调阅10000万次,信息总量已达20亿条。
大数据如何应用于医疗
随着医疗和健康数据的急剧扩容和几何级的增长,利用包括影像数据,病历数据、检验检查结果、诊疗费用等在内的各种数据,运用大数据技术对各种数据进行筛选、分析,为广大患者、医务人员、科研人员及政府决策者提供服务和协助,必将成为未来医疗领域工作的重要方向。
利用大数据,公共卫生研究机构能够更早地预测即将爆发的传染病及其传播范围和规模,比如“流感指数”,据称能够提前两周提供精确度不低于疾控中心的结果。
对个人而言,大数据可以为个人提供个性化的医疗服务。将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。
大数据技术未来在医疗领域的应用会越来越多,许多服务都需要实时的统计分析结果,为决策提供支持。处理过程及传输的实时化、及时化是未来大数据技术在医疗领域发展的重要趋势之一。
大数据应用于医疗的挑战
首先,医疗领域的数据量巨大,数据类型复杂。到2020年,医疗数据将增至35ZB,相当于2009年数据量的44倍。
其次,要想在医疗领域使用大数据技术,首先要有足够的病人、药物等相关信息,但许多病人可能出于隐私考虑不愿提供这些信息,制药企业也有可能因为商业利益不愿共享药物成分等敏感信息。再加上各医院之间医疗信息、软硬件都相互独立,不兼容,使得数据交互不畅,给数据采集带来了一定困扰。
再有,国内大数据分析在医疗领域的应用起步较晚,因为数据分析的前提是拥有相关的数据资产,其中,电子化的医疗病历应该是一个主要的数据源。在美国,从20世纪90年代开始进行EMR推广,至今已经有20多年的时间,已经上升为国家政策,这使得医疗数据的积累基础较好。但是,国内多数医院的电子化程度还不够,有些欠发达地区医院还处在手写处方的阶段。
结语
目前,国内医疗大数据的研究和推广还处于研发初始阶段,在实际应用方面仍然在等待突破。想要顺利地采集数据,找到技术与应用的结合点,需要联合各方面的力量、采纳创新的实践模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19