京公网安备 11010802034615号
经营许可证编号:京B2-20210330
少了分析技能,大数据毫无用处_数据分析师
贵公司员工是否拥有必要的技能,能从大数据中获益?汤玛斯·戴文波特(Tom Davenport)和帕蒂尔(DJ Patil)在其谈数据科学家崛起的一篇文章指出,大数据时代来临,意味着分析大量杂乱无章、非结构性的数据,将日益成为每个人工作的一部分。公司会经常要求经理人和商业分析师利用数据执行实验、解读数据,以及发挥创意,打造以数据为基础的产品与服务。要在这个世界出人头地,许多人需要额外的技能。
有些必须绞尽脑汁处理大数据的公司,已察觉到需要拥有相关技能的员工。Avanade的一份新调查报告显示,超过60%的受访者表示,它们的员工需要培养新技能,将大数据化为洞见和商业价值。设在丹麦,生产天窗、太阳能板和其他屋顶产品的国际制造商威卢克斯集团(VELUX Group)全球商业智慧(Global Business Intelligence)主管安德斯·莱恩哈特(Anders Reinhardt)相信,“在标准的训练方式中,我们只学习跟商业使用者解释如何存取数据和报告,现在这样已不再够用。大数据对使用者的要求远高于从前”。许多产业的高级管理者正在制定计划,准备提升员工的技能。他们告诉我,员工需要:
有意愿并准备好要做实验:经理人和商业分析师必须在他们负责的业务上,运用科学实验原则。他们必须懂得如何建构聪明的假说。他们也需要了解实验测试和设计的原则,包括母群选择和抽样,以评估数据分析的效度。由于金融服务、零售和制药业中,随机测试与实验日益普及,拥有科学实验设计背景的人才特别受到重视。
Google的招聘人员明白,实验和测试是该公司的文化和业务流程中不可分割的部分,所以他们会问应聘者“校车能够塞进多少颗高尔夫球?”或者“曼哈顿有多少个下水道盖?”之类的问题。问这些问题的目的,不在于找到正确的答案,而是用以考验应征者在实验设计、逻辑和计量分析方面的技能。
擅长于数学推理:今天贵公司有多少经理人真的“懂数字”,擅长于解读和运用数字数据?这种技能将越来越重要。威卢克斯的莱恩哈特解释说:“企业使用者不必是统计学家,但他们需要了解如何适当地使用统计方法。我们希望企业使用者了解如何解读数据、衡量指标,以及统计模型的结果。”
有些公司出于需要,在聘用员工的时候,已经确定他们十分擅长于数学推理。第一资本(Capital One)银行的招募作业强调雇用分析和数字处理能力强的员工,并把他们分派到业务的各个层面。包括资深高级主管在内的应聘者,都必须通过严格的面试流程,包括测试他们的数学推理、逻辑和问题解决能力。
能够看到大(数据)画面:你可以称之为“数据处理能力”,指擅长于寻找、操弄、管理和解读数据。而所谓的数据,不只包括数字,也涵盖文字和图片。数据处理能力必须从它们平常的资讯科技职能,广为向外扩展,并且成为每一个业务职能和活动不可或缺的层面。
宝洁公司(Procter & Gamble)的CEO鲍伯·麦唐纳(Bob McDonald)相信“数据建模、模拟和其他的数位工具,正在改造我们的创新方式”。这样的发展,改变了他的员工需要的技能。为了因应这个挑战,宝洁“为组织中的每个晋升层级,量身打造作为基准的数位技能量表”。威鲁卢克斯将针对商业使用者开办数据处理能力训练课程列为优先要务。经理人需要知道有什么数据可用,并且运用数据视觉化技术以处理和解读数据。“或许最重要的是,我们需要协助他们构思新种类的数据,可以如何带来新的洞见,”莱恩哈特指出。
明天的领导者需要确定他们的员工拥有这些技能,并在文化、支援和责任方面建立起配套措施。除此之外,当组织不再只有少数的信息科技专家和统计学博士,而是雇有许多员工埋首分析杂乱无章、复杂、大量的非结构性数据时,他们必须从容自在地负起领导之责。
另一个挑战是:员工有可能下载和混搭数据,而引起数据安全、可靠和准确方面的担忧。但我所进行的研究发现,员工对他们在工作上使用的技术、数据和运用程序,已经负起更多的责任。员工必须了解如何保护敏感性很高的企业数据。领导者则需要学习“信任,但查证”员工所做的分析、在出现分析失效时与员工一道寻找问题所在。
要确保大数据能够产生大价值,企业不但应采用新技术,还要再训练技能,以养成重视数据的心态和分析文化。领导这场革命的公司已经有一批专注于实验、懂数字和数据的员工。你准备好加入它们的行列了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27