
少了分析技能,大数据毫无用处_数据分析师
贵公司员工是否拥有必要的技能,能从大数据中获益?汤玛斯·戴文波特(Tom Davenport)和帕蒂尔(DJ Patil)在其谈数据科学家崛起的一篇文章指出,大数据时代来临,意味着分析大量杂乱无章、非结构性的数据,将日益成为每个人工作的一部分。公司会经常要求经理人和商业分析师利用数据执行实验、解读数据,以及发挥创意,打造以数据为基础的产品与服务。要在这个世界出人头地,许多人需要额外的技能。
有些必须绞尽脑汁处理大数据的公司,已察觉到需要拥有相关技能的员工。Avanade的一份新调查报告显示,超过60%的受访者表示,它们的员工需要培养新技能,将大数据化为洞见和商业价值。设在丹麦,生产天窗、太阳能板和其他屋顶产品的国际制造商威卢克斯集团(VELUX Group)全球商业智慧(Global Business Intelligence)主管安德斯·莱恩哈特(Anders Reinhardt)相信,“在标准的训练方式中,我们只学习跟商业使用者解释如何存取数据和报告,现在这样已不再够用。大数据对使用者的要求远高于从前”。许多产业的高级管理者正在制定计划,准备提升员工的技能。他们告诉我,员工需要:
有意愿并准备好要做实验:经理人和商业分析师必须在他们负责的业务上,运用科学实验原则。他们必须懂得如何建构聪明的假说。他们也需要了解实验测试和设计的原则,包括母群选择和抽样,以评估数据分析的效度。由于金融服务、零售和制药业中,随机测试与实验日益普及,拥有科学实验设计背景的人才特别受到重视。
Google的招聘人员明白,实验和测试是该公司的文化和业务流程中不可分割的部分,所以他们会问应聘者“校车能够塞进多少颗高尔夫球?”或者“曼哈顿有多少个下水道盖?”之类的问题。问这些问题的目的,不在于找到正确的答案,而是用以考验应征者在实验设计、逻辑和计量分析方面的技能。
擅长于数学推理:今天贵公司有多少经理人真的“懂数字”,擅长于解读和运用数字数据?这种技能将越来越重要。威卢克斯的莱恩哈特解释说:“企业使用者不必是统计学家,但他们需要了解如何适当地使用统计方法。我们希望企业使用者了解如何解读数据、衡量指标,以及统计模型的结果。”
有些公司出于需要,在聘用员工的时候,已经确定他们十分擅长于数学推理。第一资本(Capital One)银行的招募作业强调雇用分析和数字处理能力强的员工,并把他们分派到业务的各个层面。包括资深高级主管在内的应聘者,都必须通过严格的面试流程,包括测试他们的数学推理、逻辑和问题解决能力。
能够看到大(数据)画面:你可以称之为“数据处理能力”,指擅长于寻找、操弄、管理和解读数据。而所谓的数据,不只包括数字,也涵盖文字和图片。数据处理能力必须从它们平常的资讯科技职能,广为向外扩展,并且成为每一个业务职能和活动不可或缺的层面。
宝洁公司(Procter & Gamble)的CEO鲍伯·麦唐纳(Bob McDonald)相信“数据建模、模拟和其他的数位工具,正在改造我们的创新方式”。这样的发展,改变了他的员工需要的技能。为了因应这个挑战,宝洁“为组织中的每个晋升层级,量身打造作为基准的数位技能量表”。威鲁卢克斯将针对商业使用者开办数据处理能力训练课程列为优先要务。经理人需要知道有什么数据可用,并且运用数据视觉化技术以处理和解读数据。“或许最重要的是,我们需要协助他们构思新种类的数据,可以如何带来新的洞见,”莱恩哈特指出。
明天的领导者需要确定他们的员工拥有这些技能,并在文化、支援和责任方面建立起配套措施。除此之外,当组织不再只有少数的信息科技专家和统计学博士,而是雇有许多员工埋首分析杂乱无章、复杂、大量的非结构性数据时,他们必须从容自在地负起领导之责。
另一个挑战是:员工有可能下载和混搭数据,而引起数据安全、可靠和准确方面的担忧。但我所进行的研究发现,员工对他们在工作上使用的技术、数据和运用程序,已经负起更多的责任。员工必须了解如何保护敏感性很高的企业数据。领导者则需要学习“信任,但查证”员工所做的分析、在出现分析失效时与员工一道寻找问题所在。
要确保大数据能够产生大价值,企业不但应采用新技术,还要再训练技能,以养成重视数据的心态和分析文化。领导这场革命的公司已经有一批专注于实验、懂数字和数据的员工。你准备好加入它们的行列了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29