
制造业如何应对大数据管理 融合方案有新招
在如今的大数据时代,对制造行业而言,存在着极大地挑战如何满足这类客户的数据管理的需求呢?融合基础架构作为一种新型的存储解决方案正好可以解决制造行业面临的问题。
制造业的挑战
对制造行业而言,随着其业务的增加,其数据中心正不断扩大,来自企业生产、管理、销售等多个部门的数据一直源源不断地归纳到数据中心之中。尤其是在面对数据量的几何级别增长以外,海量数据的存储归档、对数据的实时访问和调取也为企业IT网络系统带来了压力。
制造行业客户亟需采用一套更加灵活、稳定和可靠的整体解决方案。正如安靠封装测试(上海)有限公司IT经理徐炯介绍的那样:“作为安靠科技世界第二大的半导体封装和测试外包服务业独立供应商的直属子公司,随着国内封装市场需求的增长,他们面临着很多新的需求。
首先,在虚拟化方面,需要新的IT平台能够提供对VMware平台数据存储的支持,来提高ESXi业务恢复效率;在存储方面,要同时具备NAS和SAN功能,来满足虚拟化平台的数据存储要求;在服务器方面,由于刀片服务器发生故障更换需要较长时间来恢复业务,新的IT平台需尽可能减少和缩短业务恢复时间并提高系统可靠性,保证关键型业务应用的响应时间” 这也是同类型制造企业面临的共同需求。
融合方案显神通
那么,究竟要如何满足上述类型客户自身业务发展需要,以及对现有IT平台升级的要求?
据徐炯介绍,他们采用了NetApp FlexPod融合基础架构作为解决方案。“NetApp FlexPod整合了思科统一管理、统一计算、统一Fabric、NetApp统一存储,并结合虚拟化桌面架构,实现了安靠技术数据中心物理和虚拟资源的池化,这也解决了其虚拟化平台的应用所带来的压力挑战,使得各部门能够快速地访问、调用数据,而且IT部门也可统一管理不断增长的数据。”
图:安靠技术FlexPod解决方案
值得一提的是,在部署FlexPod解决方案之前,安靠技术已经部署了NetApp存储系统,因此NetApp FlexPod的横向拓展功能能够支持其统一管理之前的NetApp存储系统,并且可以平滑、无中断地拓展至更多NetApp存储,为安靠技术应对今后业务版图的扩大和数据的高速增长留下空间,减少额外的投入。NetApp存储系统所具有的高稳定性和拓展能力也是其继续选择NetApp FlexPod的重要原因。
徐炯表示:“NetApp FlexPod极大减轻了数据中心的网络压力,帮助我们简化了维护工作,并提供了可靠的业务支持。”
实现高效的方案
在部署了FlexPod融合基础架构之后,安靠技术的IT平台具备了NAS和SAN功能,同时满足统一架构部署,“NetApp FlexPod融合基础架构可以同时提供万兆NFS的数据存储共享和SAN-BOOT的远程启动ESXi服务器,通过SAN架构来提供ESXi系统启动服务,并通过NAS提供VMware对数据存储的访问需求。”实现数据的集中管理,提升管理效率。降低部署和管理成本,NAS-SAN的统一架构降低了IT的部署和管理成本,NetApp FlexPod架构将思科刀片服务器部门的服务器配置和硬件分离,由此可在短期内完成服务器的更换,缩短了业务恢复所需的时间。并且支持横向拓展,为未来拓展预留空间。
现在,安靠技术不但减少了升级IT平台所需的成本,而且有效降低系统业务恢复时间,我们只需要重新指定映射关系即可恢复业务,降低了宕机时间的影响;同时具备的NAS和SAN功能也让安靠技术解决了IT平台最特别的需求。这一案例值得制造行业借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23