
大数据为什么一直火不起来?投资人说,商业模式不清晰不愿投资
大数据由来已久,在国际真正兴起普遍认为是,2009年美国奥巴马把政府的数据开放以后,而2011年的麦肯锡发布的一份报告引起了整个行业的革命。在国内是2012年9月,国务院出台了相关大数据产业化的内容。
随着高度互联和大数据时代的到来,经济领域和社会生活诸多方面均呈现海量数据的特征。大到“智慧城市”,小到“量化自我”,大数据所代表的数字化生活无处不在。庞大的信息群为数据深度分析带来新的挑战,而挖掘大数据应用的商机,则为现代企业发展管理决策提供重要价值。掌握应用数据分析方法、应用环境、应用技巧和局限,亦成为决胜互联网以及移动互联网时代的必胜法门。
在“科创通----投资界系列沙龙第二弹:洞察大数据应用”上投资界人士对大数据一探究竟。
投资界“洞察大数据应用”沙龙活动现场
有了大数据,电影未上映就知道票房盈亏不再是梦
东信首席战略官郭利锋指出,“现阶段,我们做的其实还是通过大数据对消费者进行分析拆分,分类以后所谓的消费者群体的投放。随着各个领域和各行业的数据,特别是线下的数据。”
“我们专门做了一个基金投电影。电影在没有拍之前做相应的预测,判断你赚钱还是赔钱,如果是赚钱的项目就投一笔钱进去,最终回报不是说我把数据卖给你们,而是我利用数据做投资。”海银资本合伙人李东平说。“赚多少,赔多少,具体的数字准度大概是80%。”
那么,海银资本是如何利用大数据推测出电影票房的?李东平给予了详细解读:
“电影票房预测核心就是通过在互联网上的言论、表现、社交关系,把你整个这个社交网络里边的人做一个分群——是喜欢看动作片还是喜欢看惊悚片……喜欢在什么时间看。所有的这些模型构建出来之后,是喜欢看谁拍的,是哪个导演拍的,哪个演员演的?所有这些模型构建出来之后,你出来一个片子,甚至没有拍,你把故事梗概放进去——是谍战的,或者是小清新的……根据这个模型算出有多少受众喜欢这类电影,还可以把演员确定一下,喜欢这个角色的演员一二三排一个名,第一名太贵请不起可以请第二名。所有的模型得出相应的结果,这就是我们看重的预测。”
国内大数据在哪个领域应用最多?答案是,互联网金融
对于数据的分析,不同领域可以有不同的服务,不同的方法,医药、交通、金融、零售领域居多。而互联网金融应用的是最多的。
“很多P2P机构都提到10分钟的信贷(10分钟申请,10分钟放贷),实际上就是运用后台的金融大数据平台。”华创资本董事总经理曹映雪说。“金融数据云平台,它做到的就是充分的利用申请者,不光是他传统的银行挖掘到的收入和线下的数据,它还利用爬虫手段和授权,通过申请者线上交易的支付宝信息、银行信用卡账单,迅速集成,通过自身建立的模型给借款者进行信用打分。这一点就要求具有快速处理信息能力,以及对个体信用评估模型,大数据模型的定价,各方面指标的这些确定。”
大数据虽然由来已久,但仍被认为是蓝海,那么哪些领域最有创业和投资的机会?
“作为创业者来说,我个人感觉在数据存储领域可能跟芯片相关或者跟算法相关,因为数据存储是海量的,技术更新平台是非常快的,这块可能有一些机会。在数据应用领域,我可能针对具体的行业做一些应用,这块机会也比较多。”海银资本合伙人李东平说。
大数据前景广阔,“钱”景堪忧
DCM合伙人曾振宇阐述了投资人看到的大数据目前的现状是这样的:
“我们真正看这个市场的投资机会,可能是在应用层的一些机会。或许在应用层也没有什么机会。为什么呢?真正有大数据的公司数据也不会跟你共享,你有什么好分析的,我与其让你建一个公司分析我的数据,不如把你招进来和我一块工作算了,都是这样的态度。”
华创资本董事总经理曹映雪指出,大数据怎样能变现是业内普遍焦虑的问题。“从运用的角度,包括现在很多大数据说的数据变现问题,基本还是从应用场景上没有找到合适的模式。但在金融领域,金融大数据其实有相对比较好的场景。”他说。
“经常做大数据,不要觉得有一个爬虫技术就不得了,有这个技术的人太多了,关键是你把这个数据扒下来干什么用。”钜铖资本合伙人高云卓说。“利用手里的数据创造高价值,当你面对投资人时说我挖掘出什么东西,我会创造什么价值,也许你现在不赚钱,但只要这条路是对的,投资人一定愿意掏钱。”
对于投资者来说,他们愿意投资哪类大数据应用?“我们偏向应用多一些,如果在存储、算法上有一些特色,能和硬件业务有很好连接的东西,我们也会对基础设施这块有一些投资。”乐基金成都负责人李志说。
与大数据相关的哪些行业值得挖掘?晨创投西南分公司首席代表窦勇认为,“金融可能太大,而且BAT在营销方面已经占了大头,不见得还有机会。”窦勇表示,针对一些垂直领域比如做一些APP,针对区域里边的数据资源做嫁接、挖掘可能会有出路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22