京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为什么一直火不起来?投资人说,商业模式不清晰不愿投资
大数据由来已久,在国际真正兴起普遍认为是,2009年美国奥巴马把政府的数据开放以后,而2011年的麦肯锡发布的一份报告引起了整个行业的革命。在国内是2012年9月,国务院出台了相关大数据产业化的内容。
随着高度互联和大数据时代的到来,经济领域和社会生活诸多方面均呈现海量数据的特征。大到“智慧城市”,小到“量化自我”,大数据所代表的数字化生活无处不在。庞大的信息群为数据深度分析带来新的挑战,而挖掘大数据应用的商机,则为现代企业发展管理决策提供重要价值。掌握应用数据分析方法、应用环境、应用技巧和局限,亦成为决胜互联网以及移动互联网时代的必胜法门。
在“科创通----投资界系列沙龙第二弹:洞察大数据应用”上投资界人士对大数据一探究竟。
投资界“洞察大数据应用”沙龙活动现场
有了大数据,电影未上映就知道票房盈亏不再是梦
东信首席战略官郭利锋指出,“现阶段,我们做的其实还是通过大数据对消费者进行分析拆分,分类以后所谓的消费者群体的投放。随着各个领域和各行业的数据,特别是线下的数据。”
“我们专门做了一个基金投电影。电影在没有拍之前做相应的预测,判断你赚钱还是赔钱,如果是赚钱的项目就投一笔钱进去,最终回报不是说我把数据卖给你们,而是我利用数据做投资。”海银资本合伙人李东平说。“赚多少,赔多少,具体的数字准度大概是80%。”
那么,海银资本是如何利用大数据推测出电影票房的?李东平给予了详细解读:
“电影票房预测核心就是通过在互联网上的言论、表现、社交关系,把你整个这个社交网络里边的人做一个分群——是喜欢看动作片还是喜欢看惊悚片……喜欢在什么时间看。所有的这些模型构建出来之后,是喜欢看谁拍的,是哪个导演拍的,哪个演员演的?所有这些模型构建出来之后,你出来一个片子,甚至没有拍,你把故事梗概放进去——是谍战的,或者是小清新的……根据这个模型算出有多少受众喜欢这类电影,还可以把演员确定一下,喜欢这个角色的演员一二三排一个名,第一名太贵请不起可以请第二名。所有的模型得出相应的结果,这就是我们看重的预测。”
国内大数据在哪个领域应用最多?答案是,互联网金融
对于数据的分析,不同领域可以有不同的服务,不同的方法,医药、交通、金融、零售领域居多。而互联网金融应用的是最多的。
“很多P2P机构都提到10分钟的信贷(10分钟申请,10分钟放贷),实际上就是运用后台的金融大数据平台。”华创资本董事总经理曹映雪说。“金融数据云平台,它做到的就是充分的利用申请者,不光是他传统的银行挖掘到的收入和线下的数据,它还利用爬虫手段和授权,通过申请者线上交易的支付宝信息、银行信用卡账单,迅速集成,通过自身建立的模型给借款者进行信用打分。这一点就要求具有快速处理信息能力,以及对个体信用评估模型,大数据模型的定价,各方面指标的这些确定。”
大数据虽然由来已久,但仍被认为是蓝海,那么哪些领域最有创业和投资的机会?
“作为创业者来说,我个人感觉在数据存储领域可能跟芯片相关或者跟算法相关,因为数据存储是海量的,技术更新平台是非常快的,这块可能有一些机会。在数据应用领域,我可能针对具体的行业做一些应用,这块机会也比较多。”海银资本合伙人李东平说。
大数据前景广阔,“钱”景堪忧
DCM合伙人曾振宇阐述了投资人看到的大数据目前的现状是这样的:
“我们真正看这个市场的投资机会,可能是在应用层的一些机会。或许在应用层也没有什么机会。为什么呢?真正有大数据的公司数据也不会跟你共享,你有什么好分析的,我与其让你建一个公司分析我的数据,不如把你招进来和我一块工作算了,都是这样的态度。”
华创资本董事总经理曹映雪指出,大数据怎样能变现是业内普遍焦虑的问题。“从运用的角度,包括现在很多大数据说的数据变现问题,基本还是从应用场景上没有找到合适的模式。但在金融领域,金融大数据其实有相对比较好的场景。”他说。
“经常做大数据,不要觉得有一个爬虫技术就不得了,有这个技术的人太多了,关键是你把这个数据扒下来干什么用。”钜铖资本合伙人高云卓说。“利用手里的数据创造高价值,当你面对投资人时说我挖掘出什么东西,我会创造什么价值,也许你现在不赚钱,但只要这条路是对的,投资人一定愿意掏钱。”
对于投资者来说,他们愿意投资哪类大数据应用?“我们偏向应用多一些,如果在存储、算法上有一些特色,能和硬件业务有很好连接的东西,我们也会对基础设施这块有一些投资。”乐基金成都负责人李志说。
与大数据相关的哪些行业值得挖掘?晨创投西南分公司首席代表窦勇认为,“金融可能太大,而且BAT在营销方面已经占了大头,不见得还有机会。”窦勇表示,针对一些垂直领域比如做一些APP,针对区域里边的数据资源做嫁接、挖掘可能会有出路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26