
大数据:企业发展中的“第一驱动力”
创新史上由于偶然或意外发现的产物和进程俯拾皆是。举例来说,微波炉,X光机,盘尼西林等等,都不是一纸设计的产物,而是极具视野、动力十足的革新者们将眼前之物应用于更广泛层面的产物。
数字世界中也是如此,这里技术的进步大大依赖于横向视角和开发现有技术和信息潜在功能的开阔视野。
在大数据世界中,信息来源种类以日新月异的速度变得日益繁杂,带来的信息量越来越大,给创建和整理信息的人们带来了恼人的挑战,即要充分重视手头数据集更广泛的应用。其实,现实是创造和整理数据的人们并不是决定其最广泛应用的最佳人选。
发挥数据的价值
但是我们并不应该简单粗暴地拒绝支持数据在企业外部的更广泛使用,而要鼓励向第三方开放数据,因为第三方可能对数据的应用有更广阔的视野,这样才能发挥数据的真正价值。
虽然在处理顾客数据时,隐私毫无疑问是一项重要因素,但是零售商基于隐私风险考虑而拒绝扩大数据使用权限,就忽视了这些数据对于革新者的内在价值。当然,应当记住只有在涉及个人数据或信息时,才会有隐私方面的考虑。
因此,企业应该将其注意力放在捕捉到的数据的性质和质量上。从一开始就应该评估是否有必要对涉及个人信息的数据进行整理。无论企业考虑将其数据商业化与否,都适用这一基础问题。
个人信息管理
假设要整理个人数据,是否有必要保留这一数据的个人信息?如果没有,就没有理由保留。简单来说,无意中将个人数据捕捉并保留可能会给企业带来不必要的问题,因此应该尽一切可能避免这种状况的发生。
即使有必要捕捉并保留个人数据,企业也应当尽可能早的将数据做适当匿名化处理,才能进行收集和保留。
当数据需要在现场环境中进行展示或共享时,需要确保数据输入端、API或者入口的安全——这样能够保证数据的安全转移,防止企业后门的出现。
对于这些问题的关注能够抵消,或者最少能将对隐私的担心最小化,使数据商业化顺利进行。
投入更广泛的应用
我们目前关注的是两方面的良好平衡,一方面是企业发挥日益丰富的数据集的商业化需求,另一反面是企业认识到自身并非发挥数据更广用途的最佳人选,而且未来这会带来数据的暴露。
汽车制造商的大数据能够为顾客带来更多便利,更舒适安全的享受,但这些数据还可能有更广泛的应用。企业不应当陷入猜测应当怎样使用数据激发技术创新的漩涡中,而应当拥抱大数据的商业化;另外,当在动态环境中使用数据时,应当采用安全措施防止暴露核心系统通道。
盘尼西林的发现与抗细菌真菌在废弃污染的有盖培养皿中的生长有关。那么如果企业解放数据,会出现什么创新呢?我们可以拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23