
大数据:企业发展中的“第一驱动力”
创新史上由于偶然或意外发现的产物和进程俯拾皆是。举例来说,微波炉,X光机,盘尼西林等等,都不是一纸设计的产物,而是极具视野、动力十足的革新者们将眼前之物应用于更广泛层面的产物。
数字世界中也是如此,这里技术的进步大大依赖于横向视角和开发现有技术和信息潜在功能的开阔视野。
在大数据世界中,信息来源种类以日新月异的速度变得日益繁杂,带来的信息量越来越大,给创建和整理信息的人们带来了恼人的挑战,即要充分重视手头数据集更广泛的应用。其实,现实是创造和整理数据的人们并不是决定其最广泛应用的最佳人选。
发挥数据的价值
但是我们并不应该简单粗暴地拒绝支持数据在企业外部的更广泛使用,而要鼓励向第三方开放数据,因为第三方可能对数据的应用有更广阔的视野,这样才能发挥数据的真正价值。
虽然在处理顾客数据时,隐私毫无疑问是一项重要因素,但是零售商基于隐私风险考虑而拒绝扩大数据使用权限,就忽视了这些数据对于革新者的内在价值。当然,应当记住只有在涉及个人数据或信息时,才会有隐私方面的考虑。
因此,企业应该将其注意力放在捕捉到的数据的性质和质量上。从一开始就应该评估是否有必要对涉及个人信息的数据进行整理。无论企业考虑将其数据商业化与否,都适用这一基础问题。
个人信息管理
假设要整理个人数据,是否有必要保留这一数据的个人信息?如果没有,就没有理由保留。简单来说,无意中将个人数据捕捉并保留可能会给企业带来不必要的问题,因此应该尽一切可能避免这种状况的发生。
即使有必要捕捉并保留个人数据,企业也应当尽可能早的将数据做适当匿名化处理,才能进行收集和保留。
当数据需要在现场环境中进行展示或共享时,需要确保数据输入端、API或者入口的安全——这样能够保证数据的安全转移,防止企业后门的出现。
对于这些问题的关注能够抵消,或者最少能将对隐私的担心最小化,使数据商业化顺利进行。
投入更广泛的应用
我们目前关注的是两方面的良好平衡,一方面是企业发挥日益丰富的数据集的商业化需求,另一反面是企业认识到自身并非发挥数据更广用途的最佳人选,而且未来这会带来数据的暴露。
汽车制造商的大数据能够为顾客带来更多便利,更舒适安全的享受,但这些数据还可能有更广泛的应用。企业不应当陷入猜测应当怎样使用数据激发技术创新的漩涡中,而应当拥抱大数据的商业化;另外,当在动态环境中使用数据时,应当采用安全措施防止暴露核心系统通道。
盘尼西林的发现与抗细菌真菌在废弃污染的有盖培养皿中的生长有关。那么如果企业解放数据,会出现什么创新呢?我们可以拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13