
大数据战略能不能打造第二个百度_数据分析师
4月24,以“大数据引擎驱动未来”为主题的百度第四届技术开放日在北京举行。百度CEO李彦宏表示:“技术创新是一个从量变到质变的过程。并行计算能力不断提升和云存储等技术产品成本的不断降低,使大数据真正走到了技术变革的临界点。百度开放自己的大数据核心能力,将更好地帮助传统行业挖掘数据价值,加快传统行业转型升级,进而发挥出对整体社会经济的革命性影响。”
显然,大数据蕴涵着巨大的社会价值和商业价值,已经成为一项重要的生产要素。而互联网带来的巨变让更多传统企业一时间无所适从,以技术为核心的大数据又开启新一轮的风暴。
当下,越来越多机构、企业都迫切希望从不同渠道获取的、多种类型、结构复杂的大数据中挖掘出有价值的趋势洞察,以实现快速、准确地制定决策,驱动商业和管理创新。然而,大部分机构和传统企业都普遍面临着大数据应用困境,不仅数据孤岛严重,数据存储与管理的规模、数据分析挖掘以及智能化能力也都存在着难以突破的瓶颈,处在从数据累积的量变过程转化为“数据智能”质变过程的临界点上。
或许,百度大数据将是传统企业向拥抱互联网飞跃的一座桥梁,抑或纽带。作为天然的大数据企业,百度拥有完整、领先的大数据技术,通过对全网大数据进行处理,百度成功推出百度指数、百度商情、百度司南等一系列大数据商业化应用,以及“百度迁徙”、“景点舒适度预测”、“城市旅游预测”等大数据社会化产品,便于公众和企业使用百度开放的大数据资源。下一步,百度选择了将自身处理大数据的技术能力对外开放。
李彦宏表示,目前大家可以看到的是互联网行业正在改变传统行业、改变每个人的生活,而技术也正在改变着互联网。当技术的发展累积到一定的程度以后,就会从量变向质变过渡。
可以看出,在互联网改变传统行业的同时,技术的积累也在潜移默化的牵动着互联网的神经,在技术积累到一定程度,必然会引起质变,大数据引领未来的路径。
科学技术是第一生产力,技术沉淀必将引领未来。目前,百度的技术积累确实已经实力雄厚,大数据引擎完成了开放云,数据工厂,百度大脑的“三剑合璧”,在帮助更多的传统产业插上大数据的翅膀的同时,也帮助企业、组织、政府更好地决策。
百度的做法是把开放云、数据工厂、百度大脑组成“大数据引擎”,把大数据存储、分析和智能化处理等一整套核心能力通过平台化、接口化的方式对外开放。
例如,上传海量孩子的哭声,根据小孩的哭声数据库来预测可能的症状;通过用户的脉搏、血压、心电等数据积累,依据海量数据判断或预警用户可能产生的病情等。
从这个意义上来说,技术创新带来的种种变革,随时有可能会从量变转向质变,深度颠覆我们生活的世界。百度深信“技术改变世界”,而大数据引擎对经济社会的深刻颠覆,无疑是对此最好的诠释。百度大数据引擎将进一步利用互联网强大的数据库和数据处理能力,立足于提升传统产业效率和降低他们的成本,为传统行业转型升级做好技术铺垫。
事实上,以技术为核心的百度一直在寄望用互联网方式改造传统行业。此前,CEO李彦宏曾公开表示,互联网应更加积极地向传统行业进军。其中,他重点看好的五个行业包括电商、旅游、出版、教育和医疗。前不久,李彦宏在Q4财报分析师会议上透露,百度2014年仍将进行大张旗鼓的投资。
放眼未来,将是一个大数据为核心的世界,就像互联网的快车时代。李彦宏表示:“互联网在改变中国,这可以说是过去时,甚至是现在进行时,可是我们怎么样能够为未来时做准备呢?我觉得这就需要我们对技术,对大数据,或者以大数据为基础的互联网相关技术,有一个及早的了解、及早的认知、及早的拥抱”。
不难看出,百度已经走在时代前沿,大数据更是占尽先机,目前技术的积累已经走在量变到质变的临界。李彦宏以 “百度大脑”举例,“这个项目实际上用很多计算机加上人工智能,再加上深度学习技术去模拟人脑的思维。现在大约相当于两到三岁孩子的智力水平。这可能是世界上最复杂的可以模拟人脑思维的系统。但是当你想象,摩尔定律继续做十年二十年的话,百度大脑很有可能比人脑还要聪明,那时候质变就会发生。”
正如李彦宏所说:“技术积累到一定地步的时候,会发生量变到质变。量变过程中不会觉得很重要,但当发生质变的时候就有可能被打得措手不及。而人类的思维通常习惯于去想量变的事情,而忽视质变、即将到来的质变。”
当前,大数据正处在一个量变到质变的临界点,可以肯定的是,百度凭借技术的沉淀,加上搜索领域的多年积累,已抢占大数据的先机,这样看来,BAT的位置是对的,百度一直是主角,用技术引领未来,以大数据为核心再造一个百度也不是没有可能。
李彦宏在大会致辞中还表示,互联网正在加速淘汰传统行业,同时,很多人的思维方式也正在发生着改变,各种行业也在发生着改变。首先被互联网颠覆的行业就是传统的媒体行业,随后是零售、金融等。随着更多行业被互联网所颠覆,越来越多的人已经感觉到互联网真的来了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15