
“大数据即服务”的时代即将到来_数据分析师
在传统云计算四层架构中,企业通常接触到的是Saas(软件即服务)、Paas(平台即服务)、Daas(数据即服务)技术,在基于云计算技术的大数据服务越来越普及的今天,使用好“云计算+大数据技术”,为企业提供更快、更有价值的数据服务,于是迎来了大数据即服务(即“BDaaS”)。
据初步估计,基于云计算的BDaaS在企业大数据支出中的占比将由目前的约15%上升至2021年的35%。鉴于届时全球大数据方面的支出将达到880 亿美元(约合人民币5386亿元),BDaaS市场规模预计将达到300亿美元(约合人民币1836亿元)。
市场规模这么大,各家厂商都想参与其中分一份羹,那到底BDaas是什么呢?与传统的Daas有何区别和联系呢?BDaas又有什么生命力和价值呢?
首先,BDaas可以基本理解为“云计算+大数据”环境下的Daas,在传统Daas层,除了向企业提供必须的各类数据服务以外,还需要提供数据的各类分析和研判,对于企业来说,仍需要将各类不相干的数据进行汇总和分析,仍需要分析和数据挖掘工具,仍需要相关技术和业务人才;从服务的角度来说,BDaas 层的出现,将各种大数据功能外包到云服务中,其中包括数据的提供、分析工具的提供、对数据进行分析和提供报告。部分BDaaS提供商还在它们的工具中包含咨询和顾问服务。
大数据即服务(BDaas)的到来将解决上述问题,从理论上说各种技术性细节都将“不复存在”,用户可以专注于解决业务问题。BDaas扩展了传统 Daas层,打通各个业务和分析系统,将各类企业数据进行融合,将结构化的、半结构化的和非结构化的数据将通过大数据技术进行提取和分析,对外呈现统一的数据业务服务,企业通过给出的分析数据,更深入地了解业务,进行痛点分析、同行竞争分析、产品销售趋势预测等,从而提高企业综合竞争力,推动业务的快速增长。
其次,从服务的角度来说,企业在前期投入大量成本以外,在存储和管理海量信息要求方面,也将持续投入资源和时间,这对于中小型企业来说,无疑加重了负担和进入的门槛。
BDaaS提供商将为客户解决这些问题,客户只需租用它们基于云计算的存储服务和分析引擎,根据使用时间或数据量付费。BDaaS提供商承担合规和数据保护的成本,当数据存储到他们的云服务器上后,一切工作将由他们负责。
如智能手表的产生,无疑将会催生大量的BDaaS应用。这些应用将从数以百万计佩戴智能手表的用户中收集数据,其中包括健康信息、身体活动、上下班路线图等。东软、苹果和IBM等IT巨头最近也公布了在大数据健康平台方面的合作计划。
最后,BDaaS在产品销售和市场营销等方面也在发挥越来越大的作用。目前,许多企业在线提供客户分析服务,其中包括世界上最大的直销数据销售商 Acxiom。通过对收集的海量个人信息进行分析,这些公司能有效地了解用户的行为习惯,使它们的客户在营销这方面获得领先地位。
随着越来越多的企业意识到部署大数据战略的价值,将有更多服务对它们提供支持。大数据分析能给真正重视它的企业带来积极的变化,其中包括缺乏费用和技能的中小型公司。
随着软件即服务的日趋普及,我们将越来越多地工作在虚拟环境中,在这一过程中整合分析将是很自然的下一步,这将使以前认为大数据项目是可望不可及的许多企业能参与并实施大数据项目。
(来自:http://blog.csdn.net/xieyun1977)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16