京公网安备 11010802034615号
经营许可证编号:京B2-20210330
表面看起来,大数据似乎只有大企业能够用得上。当人们首次听说海量的信息被用于反恐、治愈癌症或预测埃博拉疫情时,我们的第一印象是这些大数据很昂贵,且耗时费力。但实际上并非如此。
从人口统计到气象预报再到消费者的购物习惯等大量数据,现在都可以在网上免费找到,前提是你需要知道去哪里寻找。此外,随着利用这些数据的基本工具逐渐实现免费,且变得日益简单,任何人都将可以使用它们。
在最基本情况下,任何人都可以使用谷歌(微博)的Adwords追踪他们的用户正在网上搜索什么,这实际上就是一种大数据分析,只是有时候他们甚至连都自己根本不知道。
可是,在很多时候,大数据分析都以不够充分、非结构化或基于临时想法的模式进行。在没有基本策略的情况下,你可能偶尔会走运一次,发现很有价值的见解。但是通过适当的规划和准备,这些见解会以更有规律的方式出现。
大数据代表着小企业的机遇
在很多情况下,大数据都非常适合小企业使用。但是如果你的公司无法灵活地采取行动,即使再高明的见解也变得毫无价值。小企业通常有灵活的优势,这令其可迅速高效地完美适应数据驱动的趋势。
正如分析服务供应商Teradata数据科学主管邓肯·罗斯(Duncan Ross)去年接受BBC采访时所说:“大数据代表着许多企业机遇,但是你必须准备好支点,并关注哪些数据能为你带来利益。”
这是一个高科技舞台,无论是提供传统交易和服务的公司,还是硅谷初创的高科技公司,在利用大数据分析方面,它们都可获得同样多的帮助。
大客户洞察
近年来,食品递送公司迅速崛起,加入到英国订餐网站Just Eat和Hungry House行列中来。这些应用允许客户直接通过智能手机在家中订餐,同时允许企业利用用户数据。他们还提供有价值的信息,比如距离客户宅邸的平均距离,客户愿意花费多少钱,以及他们每天哪个时间段最喜欢就餐等。
小企业也能利用大规模的公共数据,收集受变化驱动的趋势。比如,出租车公司可利用航班和天气信息,找出哪些地方最需要他们的服务。而遛狗服务也可以利用社交媒体确认其附近潜在客户的口袋深浅。
社交媒体科学
对于任何小企业来说,社交媒体都是明显的、有潜力的数据源。所有大平台都提供目标广告,允许你针对特定年龄组、特定地域的目标出售产品和服务。但是即使不花一分钱,他们也可以看到谁在谈论什么,并据此确定将会如何影响他们的产品或服务需求。
一款名为Roambi的应用在中小型企业中正日益受到欢迎。鉴于许多小企业已经习惯于以分散方式储存数据,Roambi和类似服务提供基于智能手机的平台,允许将所有数据汇集起来,查询和报告给能够善加利用它们的人。
利用数据加强战略洞察
许多大企业已经将帮助小企业应对数据问题作为自己战略的一部分。亚马逊、谷歌、微软、Facebook以及IBM等,近年来都已经重点推出各自的大数据服务,同时让其他人从他们收集的数据与建立的基础设施中获益,当然这需要收费。
无论你是否想要建立有关自己信息的完整数据设施,还是只想利用越来越多的现成的分析应用进入公共或共享数据集,最为重要的是,你需要以更为聪明的方式将数据分析融入到自己的业务中。
正如我以前阐述过的那样,与“大数据”相比,我更喜欢“智能数据”这个词。尽管我已经讨论过“智能数据”的原则,但有必要简短回顾下,即在执行企业战略时利用数据分析获益的步骤:开始制定战略——衡量指标和数据——应用分析——报告结果——改变企业。
数据分析也能帮小企业成就大事
以智能化、结构化的方式执行数据战略,是区分大数据驱动企业与基于临时想法简单利用数据的企业的最大分别。对于小型、灵活和处于发展状态的企业来说,这些基础与那些已经利用大数据多年的行业巨头来说并无明显差异。
无论你是否计划建立专门的分析师团队,还是简单地使用iPhone查询谷歌Adwords和Social Reach,了解你正努力达到的目标以及原因非常重要。你想增加销量吗?你想确保自己的客户更加满意吗?抑或是想要更长时间地留住员工?你希望数据给出答案的问题与答案本身同样重要,因为你要确保在提问之前,你能更清晰地把握住需要找到答案的问题。
毕竟,大多数小企业不想总是停滞不前。对于小企业来说,数据分析意味着巨大机遇。但是如果你能以更明智的方式对待大数据分析,巨大机遇才更有可能发生在你的身上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05