京公网安备 11010802034615号
经营许可证编号:京B2-20210330
限制大数据采集 解决大数据商用时的隐私问题
尽管大数据技术层面的应用可以无限广阔,但是由于受到数据采集的限制,能够用于商业应用、服务于人们的数据要远远小于理论上大数据能够采集和处理的数据。用于商业行为大数据到底有哪些限制呢?
大数据按照信息处理环节可以分为数据采集、数据清理、数据存储及管理、数据分析、数据显化、以及产业应用等六个环节。在各个环节中,已经有不同的公司开始在这里占位。 而真正会制约大数据发展和应用的有三个环节:其一是数据收集和提取的合法性、数据隐私的保护和数据隐私应用之间的权衡。
任何企业或机构从人群中提取私人数据,用户都有知情权,将用户的隐私数据用于商业行为时,都需要得到用户的认可。
未来很多大数据业务在最初发展阶段将会游走在灰色地带,当商业运作初具规模并开始对大批消费者和公司都产生影响之后,相关的法律法规以及市场规范才会被迫加速制定出来。
可以预计的是,尽管大数据技术层面的应用可以无限广阔,但是由于受到数据采集的限制,能够用于商业应用、服务于人们的数据要远远小于理论上大数据能够采集和处理的数据。数据源头的采集受限将大大限制大数据的商业应用。
再次,大数据发挥协同效应需要产业链各个环节的企业达成竞争与合作的平衡。大数据对基于其生态圈中的企业提出了更多的合作要求。如果没有对整体产业链的宏观把握,单个企业仅仅基于自己掌握的独立数据是无法了解产业链各个环节数据之间的关系,因此对消费者做出的判断和影响十分有限。
在一些信息不对称比较明显的行业,例如银行业以及保险业,企业之间数据共享的需求更为迫切。例如,银行业和保险业通常都需要建立一个行业共享的数据库,让其成员能够了解到单个用户的信用记录,消除担保方和消费者之间的信息不对称,让交易进行得更为顺利。
然而,在很多情况下,这些需要共享信息的企业之间竞争和合作的关系同时存在,企业在共享数据之前,需要权衡利弊,避免在共享数据的同时丧失了其竞争优势。此外,当很多商家合作起来,很容易形成卖家同盟而导致消费者利益受到损害,影响到竞争的公平性。
大数据最具有想象力的发展方向是将不同的行业的数据整合起来,提供全方位立体的数据绘图,力图从系统的角度了解并重塑用户需求。然而,交叉行业数据共享需要平衡太多企业的利益关系,如果没有中立的第三方机构出面,协调所有参与企业之间的关系、制定数据共享及应用的规则,将大大限制大数据的用武之地。权威第三方中立机构的缺乏将制约大数据发挥出其最大的潜力。
最后,大数据可以从数据分析的层面上揭示各个变量之间可能的关联,但是数据层面上的关联如何具象到行业实践中?如何制定可执行方案应用大数据的结论?这些问题要求执行者不但能够解读大数据,同时还需深谙行业发展各个要素之间的关联。这一环节基于大数据技术的发展但又涉及到管理和执行等各方面因素。
在这一环节中,人的因素成为制胜关键。从技术角度,执行人需要理解大数据技术,能够解读大数据分析的结论;从行业角度,执行人要非常了解行业各个生产环节的流程的关系、各要素之间的可能关联,并且将大数据得到的结论和行业的具体执行环节一一对应起来;从管理的角度,执行人需要制定出可执行的解决问题的方案,并且确保这一方案和管理流程没有冲突,在解决问题的同时,没有制造出新的问题。
这些条件,不但要求执行人深谙技术,同时应当是一个卓越的管理者,有系统论的思维,能够从复杂系统的角度关联地看待大数据与行业的关系。此类人才的稀缺性将制约大数据的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24