
汽车大数据时代来临 将推动产业全产业链变革
传统的汽车行业数据来源不畅、结构单一、应用较浅,无法满足企业的数据需求。而互联网、移动互联技术的快速普及,正在诸多方面改变着人们的车辆购置和使用习惯,使传统的汽车数据收集、分析和利用方式发生重大转变,必将推动汽车产业全产业链的变革,为企业带来新的利润增长点和竞争优势。
以上是在中国汽车技术研究中心、中国汽车流通协会等单位共同举办的“2015中国汽车产业数据研究峰会”上,参会代表们达成的共识。会议围绕如何利用网络化、数字化推动我国汽车产业发展这一主题,进行了广泛而深入的讨论。
逐步覆盖全链条
据与会专家介绍,目前在数据收集方面,车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善,使汽车大数据逐步覆盖全链条。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等,随着企业信息管理水平的提高以及新的数据采集技术的使用,这些数据都将逐步得到完善。
随着数据的收集应用,汽车经销商通过移动互联、后台音频整理、证照识别录入等新技术的使用,实现从消费者“关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4s店维修保养信息。通过统计微博、峰会、网页等互联网大数据,企业可以监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据、车况数据、位置数据、驾驶数据等。
在数据分析方面,需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库。
据专家介绍,建立汽车大数据库主要分6步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等。用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图。用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义。用户聚类是指根据客户的标签进行分组。用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这6步即建成统一、整合、可直接使用的数据库。
数据应用全方位
在数据利用方面,汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地了解客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、官网等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据原理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。
大数据应用于客户管理方面,可以提升客户满意度,改善售后服务。通过建立基于大数据的CRM系统,了解客户需求,掌握客户动态,为客户提供个性化服务,促进客户回厂维修及保养,提高配件销量,增加售后产值,提升保有客户的利润贡献度。
大数据可以改善产品质量,促进产品研发。通过用户洞察,进行产品设计改进及产品性能改进,提高产品可靠性,降低产品故障率。
大数据应用在企业运营方面可通过搭建业务运营的关键数据体系,开发可视化的数据产品,监控关键数据的异动,快速发现问题并定位数据异动的原因,辅助运营决策。
助推汽车行业发展
另据专家介绍,目前汽车行业对大数据的收集、分析和利用仍处于探索阶段,因此,此次中国汽车产业数据研究峰会的召开正当其时。与会代表纷纷表示,峰会的成功召开,给业内企业提供了汽车行业利用互联网、大数据转型升级的经验交流平台,使业内企业能全面了解汽车行业各个环节利用互联网、大数据等新技术的最新进展,有利于各种新理念和新技术的快速应用,大大加快了汽车行业互联网化、数字化的进程,对于推动汽车行业的发展有着十分积极的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18