京公网安备 11010802034615号
经营许可证编号:京B2-20210330
九次方大数据创始人:大数据是创业下一个暴风口
[摘要]大数据与金融的结合,被认为是未来十年弯道超越BAT的唯一创业机会。对此,王叁寿强调:“目前九次方与一些银行合作,交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。
BAT(百度、阿里、腾讯)的创业奇迹已然发生,创业才子都在寻找下一个风口,而大数据与金融的结合,被认为是未来十年弯道超越BAT的唯一创业机会。
4月16日、24日,九次方大数据公司创始人、执行总裁王叁寿两度受邀前往北大演讲,分享个人创业经历。“大数据,创业的下一个暴风口”,演讲中,王叁寿带来了实用的干货、前沿大数据应用解读,生动讲述了大数据与金融的“天作之合”。
顺势而为
瞄准“大数据+金融”
演讲中,王叁寿梳理了大数据在国内的传播轨迹——
2009年,麦肯锡首次提出了大数据的概念;2011年,大数据概念从硅谷蔓延到北京,引起相关机构关注;2012年,中国大数据起步元年;2013年至2014年,企业纷纷看好大数据产业,先行战略部署和试水大数据项目。
2000年到2005年期间,王叁寿一直从事与数据相关的工作,在商务部研究院兼职,给麦肯锡写与数据有关的报告、做调研。在意识到数据的商业价值后,王叁寿决定跨界大数据金融行业创业。2010年,九次方大数据诞生。
彼时,国内大数据之势未起——
“那时候,没有公司可以称得上是大数据公司。九次方主要做了一件事情,就是汇集了全国的企业数据。”九次方定位为企业金融大数据服务平台,创立依靠200多人的地面部队,在全国撒网,收集拟上市公司的融资需求,同时沉淀企业运营的相关数据。
然而,人工收集太慢,而且数据是动态、实时、可变化的,九次方便想到做一个金融系统终端,让数据可以不断扩展。
如今,九次方已成长为国内最大的金融大数据公司——
经过五年沉淀,九次方掌握的数据已覆盖40多个产业链、8000多个行业、4万多个细分市场的九百万家企业。针对每家企业设立70多个指标,进行交叉分析统计。此外,九次方还与汤森路透、标准普尔达成战略合作伙伴关系。
“创业一定要顺势而为。”经历了两次创业,王叁寿向热爱创业的朋友分享他的经验,“创业最避讳的事情就是认为自己的人不行,到处找所谓的牛人。创业不需要拉什么高大上的人进来,比起这个,我更关注他是以什么心态进来。”
冲击上市
大数据带来腾飞机遇
2012年,九次方还没有开始盈利,就获得了来自博信资本、IDG资本及德同资本的A轮近一亿元投资。
2014年,九次方首次实现盈利,且数据服务合同超过亿元的体量。王叁寿介绍:“九次方的收入60%来自银行,30%来自政府,还有10%来自小贷公司等。”目前,九次方已为全国20多地政府、40多家银行提供服务。
今年2月1日,九次方B轮融资,获得8家知名投资机构共2亿元注资。
王叁寿的计划是,今年底冲击上市。上市,一方面可以回报投资人,另一方面可以惠及创业团队和员工。目前,九次方20%的员工持有股份,而且是原始股。公司的管理层持股平台每年都对管理层及优秀员工开放一次,这样就可以达到全员创业的效果。
“现在做得非常好的企业没有一家是一个人做出来的,都是拼合力。一个人很难聚集三种技术能力,每个人分工要极其明确。”王叁寿认为,技术型人才未来的重心可以向“应用”上倾斜,关注银行、金融机构的客户需求,投投资人之所好,比技术更重要。
前景巨大
清洗交易让数据变现
“大数据行业市场还不成熟,连60分都不到。”王叁寿分析,中西大数据差距不算太大,国家政府政策宽容,创业环境宽松,大数据拥有非常大的市场。“北京市政府拥有的数据是十个阿里巴巴那么多,现在各个地方政府的数据都没有做清洗和分析,这是一个非常大的市场。”
“数据清洗不是用拿水冲啊,而是用电脑把不规则的数据清洗成规则的数据。”王叁寿幽了一默,他说,除了政府这块大蛋糕,不少手握大数据的企业也希望交易大数据,一方面获取自己所需的大数据,另一方面可以将手中的大数据变现。
4月中旬,全国首家大数据交易所——贵阳大数据交易所投入运营,并完成首笔交易仪式,大数据有了变现的通道,作为交易所第二大股东,王叁寿同时负责交易所的运营。此前,九次方还在贵阳、天津等地建立了两个大数据清洗基地,一系列布局,王叁寿正致力于将九次方打造成大数据清洗领域的“富士康”。
问答环节,同学们对大数据交易可能涉及的隐私以及商业秘密泄露等问题十分关注。对此,王叁寿强调:“目前九次方与一些银行合作,交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22