
九次方大数据创始人:大数据是创业下一个暴风口
[摘要]大数据与金融的结合,被认为是未来十年弯道超越BAT的唯一创业机会。对此,王叁寿强调:“目前九次方与一些银行合作,交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。
BAT(百度、阿里、腾讯)的创业奇迹已然发生,创业才子都在寻找下一个风口,而大数据与金融的结合,被认为是未来十年弯道超越BAT的唯一创业机会。
4月16日、24日,九次方大数据公司创始人、执行总裁王叁寿两度受邀前往北大演讲,分享个人创业经历。“大数据,创业的下一个暴风口”,演讲中,王叁寿带来了实用的干货、前沿大数据应用解读,生动讲述了大数据与金融的“天作之合”。
顺势而为
瞄准“大数据+金融”
演讲中,王叁寿梳理了大数据在国内的传播轨迹——
2009年,麦肯锡首次提出了大数据的概念;2011年,大数据概念从硅谷蔓延到北京,引起相关机构关注;2012年,中国大数据起步元年;2013年至2014年,企业纷纷看好大数据产业,先行战略部署和试水大数据项目。
2000年到2005年期间,王叁寿一直从事与数据相关的工作,在商务部研究院兼职,给麦肯锡写与数据有关的报告、做调研。在意识到数据的商业价值后,王叁寿决定跨界大数据金融行业创业。2010年,九次方大数据诞生。
彼时,国内大数据之势未起——
“那时候,没有公司可以称得上是大数据公司。九次方主要做了一件事情,就是汇集了全国的企业数据。”九次方定位为企业金融大数据服务平台,创立依靠200多人的地面部队,在全国撒网,收集拟上市公司的融资需求,同时沉淀企业运营的相关数据。
然而,人工收集太慢,而且数据是动态、实时、可变化的,九次方便想到做一个金融系统终端,让数据可以不断扩展。
如今,九次方已成长为国内最大的金融大数据公司——
经过五年沉淀,九次方掌握的数据已覆盖40多个产业链、8000多个行业、4万多个细分市场的九百万家企业。针对每家企业设立70多个指标,进行交叉分析统计。此外,九次方还与汤森路透、标准普尔达成战略合作伙伴关系。
“创业一定要顺势而为。”经历了两次创业,王叁寿向热爱创业的朋友分享他的经验,“创业最避讳的事情就是认为自己的人不行,到处找所谓的牛人。创业不需要拉什么高大上的人进来,比起这个,我更关注他是以什么心态进来。”
冲击上市
大数据带来腾飞机遇
2012年,九次方还没有开始盈利,就获得了来自博信资本、IDG资本及德同资本的A轮近一亿元投资。
2014年,九次方首次实现盈利,且数据服务合同超过亿元的体量。王叁寿介绍:“九次方的收入60%来自银行,30%来自政府,还有10%来自小贷公司等。”目前,九次方已为全国20多地政府、40多家银行提供服务。
今年2月1日,九次方B轮融资,获得8家知名投资机构共2亿元注资。
王叁寿的计划是,今年底冲击上市。上市,一方面可以回报投资人,另一方面可以惠及创业团队和员工。目前,九次方20%的员工持有股份,而且是原始股。公司的管理层持股平台每年都对管理层及优秀员工开放一次,这样就可以达到全员创业的效果。
“现在做得非常好的企业没有一家是一个人做出来的,都是拼合力。一个人很难聚集三种技术能力,每个人分工要极其明确。”王叁寿认为,技术型人才未来的重心可以向“应用”上倾斜,关注银行、金融机构的客户需求,投投资人之所好,比技术更重要。
前景巨大
清洗交易让数据变现
“大数据行业市场还不成熟,连60分都不到。”王叁寿分析,中西大数据差距不算太大,国家政府政策宽容,创业环境宽松,大数据拥有非常大的市场。“北京市政府拥有的数据是十个阿里巴巴那么多,现在各个地方政府的数据都没有做清洗和分析,这是一个非常大的市场。”
“数据清洗不是用拿水冲啊,而是用电脑把不规则的数据清洗成规则的数据。”王叁寿幽了一默,他说,除了政府这块大蛋糕,不少手握大数据的企业也希望交易大数据,一方面获取自己所需的大数据,另一方面可以将手中的大数据变现。
4月中旬,全国首家大数据交易所——贵阳大数据交易所投入运营,并完成首笔交易仪式,大数据有了变现的通道,作为交易所第二大股东,王叁寿同时负责交易所的运营。此前,九次方还在贵阳、天津等地建立了两个大数据清洗基地,一系列布局,王叁寿正致力于将九次方打造成大数据清洗领域的“富士康”。
问答环节,同学们对大数据交易可能涉及的隐私以及商业秘密泄露等问题十分关注。对此,王叁寿强调:“目前九次方与一些银行合作,交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04