
“大数据”如何促进高校学生管理工作思路转变
在教育中有两个特定的领域会用到大数据:教育数据挖掘和学习分析。在我国,教育界也对“大数据”的关注越来越多,尤其是对教育数据挖掘和学习分析这两个特定的领域。因此,大数据时代下学生工作的创新与发展已经呼之欲出。
在大数据时代,不是部分育人,而是全员育人
在大数据时代到来以前,随机抽样一直是我们最常使用的调查研究方式之一,然而,众所周知,随机抽样是在总体数据不可采集和分析的情况下才应运而生的,随着大数据时代的到来,这些都将成为可能,随机抽样的缺陷也将展露无疑。作为一名高校学生管理工作者,我们在实践中发现,用采样的数据分析方法违背了“为了一切学生”的工作理念。虽然随机采样大多数时候正确率非常高(可达97%),对于学校的整体情况来说,3%的错误率是可以接受的,但是对于每个学生来说,他们的具体信息和细节你无法掌握,甚至因为这3%的错误率还可能失去了对某类学生或者某个问题的研究能力,这对于学生管理工作来说将是一个巨大的隐患。因此,采用随机抽样的方法已经不能适应学生工作管理者“全员育人”的目标和要求,取而代之的是,以“样本=总体”的思维,面向高校所有学生,通过大容量的数据存储设备和先进的数据分析手段,收集并掌握每个学生全面和完整的数据,从而实现高校学生工作管理从“部分育人”到“全员育人”的转变。
在大数据时代,不是追求精确,而是追求效率
在小数据时代,因为收集到的数据有限,一旦出现一个细小的错误就会被放大,甚至影响整个数据的分析结果,所以我们要求收集数据的每一个环节尽量保证零失误率,同时确保记录下来的数据尽量精确。但是,如果我们掌握的数据多到接近总体,数据的精确性反而变得不那么重要了,因为大数据对错误的包容性可以帮助我们做更多新的事情,创造更好的结果,例如,观察到更多变化和细节。“大数据”建立之后,虽然每个学院操作起来可能会更加混乱,但众多的数据加起来不仅能抵消掉错误数据的影响,而且能够实时更新每个学院不断变化的各种信息,帮助我们掌握事情的发展趋势,从而得出一个更加准确的结果,同时提供更多的额外价值。因此,从这一角度来看,大数据的混杂性反而提高了我们工作的效率。在分析问题时,我们不再需要担心某个分析点对整个调查结果的不利影响;在寻找解决方法时,我们也不再需要以高昂的代价消除所有的不确定性去寻找唯一的答案。这不仅使我们能够更加辩证、客观地看待每一个学生,也使我们在接受这些纷繁数据的不精确和不完美的同时,接受了每个学生的个性化和复杂化。
在大数据时代,不是注重因果关系,而是注重相关关系
在小数据世界中,因果关系是核心竞争力,但是在大数据时代,相关关系将发挥更大的价值。通过识别有用的关联物,相关关系虽然不能帮助我们揭示这个人或这个状态背后的原因以及发生这个现象的内部运作机制,但是可以帮助我们了解一个人的状态或现象,还可以通过寻找关联物预测未来。一个学生如果出现问题,不会是瞬间的,而是慢慢地出问题的。通过收集所有的数据,我们可以预先捕捉到学生要出现问题的信号,例如学学习成绩的下降、参与活动的次数减少等等,这些都说明他可能要出问题了。作为高校学生工作管理者,就可以利用“大数据”把这些异常情况和正常情况进行对比,然后知道什么地方出了什么问题。通过尽早地发现异常,管理者就可以在问题出现之前采取措施进行疏导和调解。因此,在大数据时代,相关关系将大放异彩,不仅仅是因为它能为我们提供因果关系所不能提供的视角,而且是因为这些视角都很清晰,有很高的分析价值,从而有助于我们拓宽研究思路并积极应用于实践。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23