
大数据服装电商来袭 马云还能笑多久_数据分析师
黑马说:电商上,服装品类交易额占总量的30%多。在大众心智中,买电器到京东、苏宁,买图书到当当、亚马逊。剩下的服装品类以淘宝为首,多家电商竞争激烈。但是,淘宝的C2C模式潜伏着严重的弊端。淘宝如果不从传统的服装产业链寻求改变,未来五年必死。为什么这么说呢?
我们要先看一下淘宝的商业模式。不考虑支付宝,淘宝的C2C模式是这样的:
图1 淘宝的商业模式
但在“卖家”两个字的背后,隐藏着庞大的产业链。
传统的服装产业链是这样的:一位在服装公司工作的设计师,会根据服装公司现有的布料,每个月画上百张图,其中也许有一两个款式会被设计总监通过(也许一个都没有),然后交给打版师,服装公司会预估这个款型衣服的销量,比如1000件,按照SSS码~XXX码生产出来。如果是淘品牌,这时就会直接放到自家的淘宝店上开始营销、销售;如果是传统服装公司,则会把服装以一定折扣价格交给网络/实体经销商。
图2 淘宝的服装品类产业链
其中的打版、投资生产、经销渠道等等专业分工,设计师无法独立完成,只能由公司做代表,依托品牌,在淘宝等各种平台上销售服装。
服装企业之所以会价格高,还有一个很重要的原因是要平衡库存成本,这其中包括仓储的硬件成本、人员成本、还有报废成本。服装行业有句老话:卖服装卖一辈子,钱没挣到什么,就挣到一库存的衣服。
通过大数据和众筹, 目前国内数家新兴的服装电商公司已经通过C2B、DP2C等模式,解决了上述问题。
C2B模式电商
C2B模式的特点是,客户提前下单,商家根据客户需求,按需生产。这样可以大幅度缩减库存成本和预生产成本。目前服装行业最有代表性的就是高端西服私人订制。
但订制西服的最大成本就是,每一件西服都需要单独打版,一个老打版师需要1万月薪,而一个打版师每天最多只能做两个版。从而制约了西服订制行业的发展。
但通过大数据分析,在海量数据的基础上,计算机自动打扮成为了可能。比如红领西服,通过大数据电商平台,可以分析出每一位客户每厘米身体差异所带来的版式变化,不需要打版师,每天可以处理2000件以上的订单。
DP2C模式电商
据统计,90%以上的消费者都有身体缺陷,因为担心网上的标准尺码服装不一定符合自己的身体特征,所以消费者80%的服装购买行为是在线下完成的。很多消费者都希望自己的衣服是私人订制的,但私人订制服装的款式少、价格贵。这个问题怎么解决呢?目前一些服装电商,比如嘉美转转,通过DP2C模式解决了以上问题。
要想解决价格贵的问题,第一步就是体型特征的标准化。通过大数据分析,总结不同的体型特征,每个尺码根据体型特征细分。消费者选择自己体型特征相匹配的号码。
解决价格贵问题的第二步,是“小规模批量化的订制服务”。这是一种“准订制化”服务,通过众筹预订和背后的柔性供应链,一款衣服只要有20个订单即可生产。从而避免了库存压力。随之带来的好处是零库存,成本大幅下降。平台又可以把成本大幅下降带来的好处与消费者共享。
“DP2C”模式则可以解决款式少的问题,“DP2C”的D是设计师,P则是平台。设计师在平台上设计服装,平台负责打版、生产,并为消费者把控面料质量和生产质量。
通过去中间化,在未来,没有产品精神的服装公司将无法生存。未来的服装电商平台,将与设计师一起,共同为消费者量体裁衣。
图3 未来的服装电商
反观淘宝模式,克里斯坦森在《创新者的窘境》上写道,企业的变革并不是由自身决定的,而是由它的上下游企业共同决定的。淘宝的生存,正是依托于中国广大的中小型传统服装公司。
O2O的本质是去中间化,这样的例子屡见不鲜,正如起点中文网去掉了出版社、河狸家去掉了美甲店一样,传统服装公司一旦变成“中间环节”被去掉,淘宝将没有生存的土壤,这时候,马云还能笑多久呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08