京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据服装电商来袭 马云还能笑多久_数据分析师
黑马说:电商上,服装品类交易额占总量的30%多。在大众心智中,买电器到京东、苏宁,买图书到当当、亚马逊。剩下的服装品类以淘宝为首,多家电商竞争激烈。但是,淘宝的C2C模式潜伏着严重的弊端。淘宝如果不从传统的服装产业链寻求改变,未来五年必死。为什么这么说呢?
我们要先看一下淘宝的商业模式。不考虑支付宝,淘宝的C2C模式是这样的:
图1 淘宝的商业模式
但在“卖家”两个字的背后,隐藏着庞大的产业链。
传统的服装产业链是这样的:一位在服装公司工作的设计师,会根据服装公司现有的布料,每个月画上百张图,其中也许有一两个款式会被设计总监通过(也许一个都没有),然后交给打版师,服装公司会预估这个款型衣服的销量,比如1000件,按照SSS码~XXX码生产出来。如果是淘品牌,这时就会直接放到自家的淘宝店上开始营销、销售;如果是传统服装公司,则会把服装以一定折扣价格交给网络/实体经销商。
图2 淘宝的服装品类产业链
其中的打版、投资生产、经销渠道等等专业分工,设计师无法独立完成,只能由公司做代表,依托品牌,在淘宝等各种平台上销售服装。
服装企业之所以会价格高,还有一个很重要的原因是要平衡库存成本,这其中包括仓储的硬件成本、人员成本、还有报废成本。服装行业有句老话:卖服装卖一辈子,钱没挣到什么,就挣到一库存的衣服。
通过大数据和众筹, 目前国内数家新兴的服装电商公司已经通过C2B、DP2C等模式,解决了上述问题。
C2B模式电商
C2B模式的特点是,客户提前下单,商家根据客户需求,按需生产。这样可以大幅度缩减库存成本和预生产成本。目前服装行业最有代表性的就是高端西服私人订制。
但订制西服的最大成本就是,每一件西服都需要单独打版,一个老打版师需要1万月薪,而一个打版师每天最多只能做两个版。从而制约了西服订制行业的发展。
但通过大数据分析,在海量数据的基础上,计算机自动打扮成为了可能。比如红领西服,通过大数据电商平台,可以分析出每一位客户每厘米身体差异所带来的版式变化,不需要打版师,每天可以处理2000件以上的订单。
DP2C模式电商
据统计,90%以上的消费者都有身体缺陷,因为担心网上的标准尺码服装不一定符合自己的身体特征,所以消费者80%的服装购买行为是在线下完成的。很多消费者都希望自己的衣服是私人订制的,但私人订制服装的款式少、价格贵。这个问题怎么解决呢?目前一些服装电商,比如嘉美转转,通过DP2C模式解决了以上问题。
要想解决价格贵的问题,第一步就是体型特征的标准化。通过大数据分析,总结不同的体型特征,每个尺码根据体型特征细分。消费者选择自己体型特征相匹配的号码。
解决价格贵问题的第二步,是“小规模批量化的订制服务”。这是一种“准订制化”服务,通过众筹预订和背后的柔性供应链,一款衣服只要有20个订单即可生产。从而避免了库存压力。随之带来的好处是零库存,成本大幅下降。平台又可以把成本大幅下降带来的好处与消费者共享。
“DP2C”模式则可以解决款式少的问题,“DP2C”的D是设计师,P则是平台。设计师在平台上设计服装,平台负责打版、生产,并为消费者把控面料质量和生产质量。
通过去中间化,在未来,没有产品精神的服装公司将无法生存。未来的服装电商平台,将与设计师一起,共同为消费者量体裁衣。
图3 未来的服装电商
反观淘宝模式,克里斯坦森在《创新者的窘境》上写道,企业的变革并不是由自身决定的,而是由它的上下游企业共同决定的。淘宝的生存,正是依托于中国广大的中小型传统服装公司。
O2O的本质是去中间化,这样的例子屡见不鲜,正如起点中文网去掉了出版社、河狸家去掉了美甲店一样,传统服装公司一旦变成“中间环节”被去掉,淘宝将没有生存的土壤,这时候,马云还能笑多久呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26