
大数据服装电商来袭 马云还能笑多久_数据分析师
黑马说:电商上,服装品类交易额占总量的30%多。在大众心智中,买电器到京东、苏宁,买图书到当当、亚马逊。剩下的服装品类以淘宝为首,多家电商竞争激烈。但是,淘宝的C2C模式潜伏着严重的弊端。淘宝如果不从传统的服装产业链寻求改变,未来五年必死。为什么这么说呢?
我们要先看一下淘宝的商业模式。不考虑支付宝,淘宝的C2C模式是这样的:
图1 淘宝的商业模式
但在“卖家”两个字的背后,隐藏着庞大的产业链。
传统的服装产业链是这样的:一位在服装公司工作的设计师,会根据服装公司现有的布料,每个月画上百张图,其中也许有一两个款式会被设计总监通过(也许一个都没有),然后交给打版师,服装公司会预估这个款型衣服的销量,比如1000件,按照SSS码~XXX码生产出来。如果是淘品牌,这时就会直接放到自家的淘宝店上开始营销、销售;如果是传统服装公司,则会把服装以一定折扣价格交给网络/实体经销商。
图2 淘宝的服装品类产业链
其中的打版、投资生产、经销渠道等等专业分工,设计师无法独立完成,只能由公司做代表,依托品牌,在淘宝等各种平台上销售服装。
服装企业之所以会价格高,还有一个很重要的原因是要平衡库存成本,这其中包括仓储的硬件成本、人员成本、还有报废成本。服装行业有句老话:卖服装卖一辈子,钱没挣到什么,就挣到一库存的衣服。
通过大数据和众筹, 目前国内数家新兴的服装电商公司已经通过C2B、DP2C等模式,解决了上述问题。
C2B模式电商
C2B模式的特点是,客户提前下单,商家根据客户需求,按需生产。这样可以大幅度缩减库存成本和预生产成本。目前服装行业最有代表性的就是高端西服私人订制。
但订制西服的最大成本就是,每一件西服都需要单独打版,一个老打版师需要1万月薪,而一个打版师每天最多只能做两个版。从而制约了西服订制行业的发展。
但通过大数据分析,在海量数据的基础上,计算机自动打扮成为了可能。比如红领西服,通过大数据电商平台,可以分析出每一位客户每厘米身体差异所带来的版式变化,不需要打版师,每天可以处理2000件以上的订单。
DP2C模式电商
据统计,90%以上的消费者都有身体缺陷,因为担心网上的标准尺码服装不一定符合自己的身体特征,所以消费者80%的服装购买行为是在线下完成的。很多消费者都希望自己的衣服是私人订制的,但私人订制服装的款式少、价格贵。这个问题怎么解决呢?目前一些服装电商,比如嘉美转转,通过DP2C模式解决了以上问题。
要想解决价格贵的问题,第一步就是体型特征的标准化。通过大数据分析,总结不同的体型特征,每个尺码根据体型特征细分。消费者选择自己体型特征相匹配的号码。
解决价格贵问题的第二步,是“小规模批量化的订制服务”。这是一种“准订制化”服务,通过众筹预订和背后的柔性供应链,一款衣服只要有20个订单即可生产。从而避免了库存压力。随之带来的好处是零库存,成本大幅下降。平台又可以把成本大幅下降带来的好处与消费者共享。
“DP2C”模式则可以解决款式少的问题,“DP2C”的D是设计师,P则是平台。设计师在平台上设计服装,平台负责打版、生产,并为消费者把控面料质量和生产质量。
通过去中间化,在未来,没有产品精神的服装公司将无法生存。未来的服装电商平台,将与设计师一起,共同为消费者量体裁衣。
图3 未来的服装电商
反观淘宝模式,克里斯坦森在《创新者的窘境》上写道,企业的变革并不是由自身决定的,而是由它的上下游企业共同决定的。淘宝的生存,正是依托于中国广大的中小型传统服装公司。
O2O的本质是去中间化,这样的例子屡见不鲜,正如起点中文网去掉了出版社、河狸家去掉了美甲店一样,传统服装公司一旦变成“中间环节”被去掉,淘宝将没有生存的土壤,这时候,马云还能笑多久呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29