京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈大数据和视频检索技术_数据分析师
近年来,大数据一词越来越多地被提及与使用,其含义是广泛的,涉及到各行业,我们正处在一个数据爆炸性增长的“大数据”时代,大数据对社会经济、政治、文化,人们生活等方面产生深远的影响,大数据对人类的数据驾驭能力提出了新的挑战与机遇。人们用大数据来描述和定义信息爆炸时代产生的海量数据。这些数据包括:移动互联、社交网络、电子商务、科学计算等等。其中视频又是构成大数据最大的一部分。
大数据的产生
根据相关机构的调查显示,全球监控摄像机市场在未来五年内将保持稳步增长,到2017年预计将上升到1亿台。仅视频监控录像而言,每天的数据量就达上千PB,累计的历史数据将更为庞大,由此也可以看出,监控视频在大数据体系中占有极大地位置。如今随着4K时代的到来,更高清的应用越来越普及,由此产生的数据将会越来越大,视频监控也将步入更高清的大数据井喷时代。
大数据技术之视频检索
“大数据或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。”维基百科对大数据的定义将大数据的特点阐释得非常清晰:“海量”和“非结构化”。这两个特点在视频监控行业尤为突出,如何在“海量”和“非结构化”的监控视频数据中快速找到对人们有用的信息变的尤为重要。
正是基于上述思考,视频检索技术应运而生。视频检索主要是依赖于视频算法对视频进行预处理,通过对视频内容进行结构化处理,提取出视频内容中的有效信息,进行标记或者相关处理后,人后可以通过各种属性描述进行快速检索。因此视频检索最主要的是利用视频检测算法对视频进行结构化描述,目前已经在相应的产品中得到应用的算法主要有以下几种:行为分析算法、车牌识别算法、车辆颜色识别算法、车标识别算法、车型识别算法、人脸检测识别算法、人体特征识别算法等。其中人体特征识别又包括人的年龄、性别、身高、衣服颜色、是否戴眼镜等特征信息的识别。视频检索技术在安防领域的重要作用是毋庸置疑的,其可以快速地从海量的数以万计的监控录像中,找到有用的关键信息,将为视频监控带来革命性的影响。
在视频检索技术出现之前,海量视频的分析一直是困扰人们的一个难题。据南方都市报报道,一个也门商人在广州打的丢行李,广州交通委花了两天的时间才从海量的出租车GPS信息和交通监控视频找到丢失的行李。面对如此多的监控数据,去寻找到证据和线索,无异于大海捞针,但目前的现实情况通常是被迫使用人海战术进行查看。一个案件的审看需要更为广泛的查看相关的摄像机视频,所审看的视频量时常达到数百上千小时。在目前的人工查看模式下,传统的方法需要从头到尾顺序播放,往往需要数倍于原始视频的时间才能审看完成,因此需要大量人员审看。为了规避遗漏和误差,很多刑侦队采用加大人力投入的方法,但是这种办法既影响了破案进度和效率,又使得工作人员疲惫不堪。如果有视频检索技术对视频中运动的物体等进行检索和排除,就能比较大的提高办案效率。
虽然视频检索技术在实际应用过程中,可以快速地从海量监控录像中找到一些有明显特征的人或物,但是技术所限,传统的检索方式显得比较单一,检索方式不够“智能”,这已经成为大型监控系统视频资料分析中的一个瓶颈。随着视频检索技术的不断发展,国家、企事业单位人力物力的大量投入,比如杭州海康威视数字技术股份有限公司着力于此应用的研发,并开发出视频检索系统,系统采用海康威视自主高效智能分析算法技术,保证分析信息的全面和准确,同时系统采用集群化计算方式,可提供几十上百倍实时以上的快速分析能力,并可根据应用需要进行线性扩展,提高计算能力。
本系统在视频资料录入的同时,就自动对视频中的目标信息进行格式归一化与智能预处理分析,对视频进行快速处理,提取视频中目标的相关信息作为智能元数据保存至数据库中。之后的相关操作,如智能审看、智能检索等等就不用再做复杂的解码以及智能分析的工作,而是直接从智能元数据中提取,大大的提高了工作效率。根据智能元数据信息,可对目标及目标细化特征等视频内容级别进行筛选,如颜色、人/车分类等。用户还可根据案情的需要自定义设置不同的周界防范规则,通过在数据库中对元数据进行检索提取触发规则的目标信息,达到快速检索的目的,极大地提高了效率。系统可以帮助刑侦人员高效、精准地聚焦到所关注的目标,有效解决目前视频众多、信息量巨大等视频查找的棘手问题,使通过视频调查取证不再费时和繁琐,提高办案民警的工作效率,达到科技强警的目的,符合公安部对于公安信息化建设的要求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08