京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用大数据软件分析金融数据_数据分析师
大数据妙不可言,但它真能改变企业的运作方式吗?答案毋庸置疑是肯定的。大数据可谓眼下的热门词汇,成为众人口中津津乐道的话题,然而人们对它的实际影响力如雾里看花。大数据具体在金融行业的应用领域,据有限的接触来看,以下领域需要大数据发挥更大更多的作用。
1、用户授信:这其实是数据挖掘最早应用的领域之一,国内的数据挖掘最早基本上也是基于授信所需要的分类挖掘算法而发展的。基于大数据对用户信用风险进行判断,是一个重要的方向。特别是目前很多信用评估体系是依赖于国外的评估机构,如果能够基于大数据(看你能获得何种数据)来构建起信用评估机制来,这个会有市场。
2、交易风险控制:这个跟用户授信不同。原来的数据挖掘能够实现对用户静态的信用评估,基于大数据的流式处理能力可以实现对用户的动态评估,即交易风险的判断。例如,当你发现同一个帐户在近乎相同的时间在不同的地区进行信用卡交易的时候,这个时候交易风险就产生了。客户的信用卡可能被盗,也可能存在欺诈交易行为。
3、提现预测:目前互联网金融的一个很大的特定就是打破了原来流动性和收益率不能兼得的特征。而现在的很多“宝宝”能够两者兼得,除了跟创新有关外,在技术层面如果能够实现大数据对产品的支撑,会做得更高效。具体来说,“宝宝”们需要满足每天用户提现的需求,这就需要储备流动性强的资金,储备少了,会出现挤兑;储备多了,而资金不能得到充分利用,无法产生更多的收益。所以需要构建预测模型,实现对资金需求的有效预算与管理。
4、营销监控与评估:这个是容易被忽视的领域,因为是涉及到具体战术的工作。以后大多数人都关注营销效果的最终效果,比如搞了个客户营销产品,看最终转化了多少,但其实有很多环节可能会影响到用户的转化。比如接触情况,比如吸引性,比如消费滞后性等等。这些需要依赖于大数据基于更客户更准确的解答。
5、流失预警:如果你能获取的数据可以洞察用户在整个相关产品里的使用行为,你就可以洞察用户潜在的流失风险与去向。例如,你会发现原来较优质的客户最近在一段时间里突然不太活跃了,这可能就会有风险,但是到底是最近比较忙没有交易?还是另有他爱了?这个需要依赖于大数据进行洞察。用户可能这段时间正在关注或已经购买竞争对手的产品,这可以提供更大的营销管理价值。
从事这类系统开发的机构以方正集团、谷尼国际软件公司、湖南蚁坊软件有限公司、深圳乐思软件技术有限公司为代表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08