京公网安备 11010802034615号
经营许可证编号:京B2-20210330
无论是在构建大数据的应用程序,还是仅仅只想从开发的移动应用中得到一点点启发,程序员现在比以往任何时候都需要数据分析工具。这绝对是一个好东西,所以很多公司从程序员的需求和技能出发,构建了一些数据分析工具。
在过去的几年里,Derrick看到了很多初创公司,各类项目以及开发工具等等,它们都旨在为程序员带来先进的数据分析能力。有时候,程序员们会使用简单的脚本开发出强大的显示效果,或者在开发过程中使用一种更简易的方式来实现数据的交付功能,Derrick相信这是一个很有意义的发展趋势。
在云计算和移动应用的世界里,围绕一个简单的应用开创一个新事业已经比以往要容易的多。甚至在大公司,开发者都在为推销应用或者推进应用的货币化而奋斗。不过在应用的开发过程中,开发者可能需要加入一些数据流,这样才能让应用火起来。
毋庸置疑,大多数程序员的工作都是围绕着铺天盖地的代码而绝非数据流。所以程序员们可能需要一点点帮助,Derrick为开发者列举了12种工具(按字母排序),不过他表示也可能会有遗漏一些不错的选择,如果细心的读者发现的话,请在文章评论中留言。
1. BitDeli
BitDeli是今年11月份在旧金山成立的一家初创公司。它能衡量出任何使用Python脚本的应用程序的指标,联合创始人兼CEO Ville Tuulos告诉Derrick,脚本可以很简单,也可以很复杂甚至未来可以延伸到机器学习。不过和重量级选手Hadoop相比,BitDeli自认为是一个轻量级的Ruby。
2. Continuuity
Continuuity是前Yahoo首席云架构师Todd Papaioannou和Facebook HBase的工程师Jonathan Gray的心血结晶,Continuuity想让所有的公司都能像Yahoo、Facebook一样运营。该团队创建了一个大数据工具,它可以简化Hadoop以及HBase集群的复杂性,而且包含一系列开发套件,旨在帮助程序员开发大数据应用,该平台采用Hadoop技术,允许开发者在防火墙内外对大数据应用软件进行部署、扩展和管理。公司联合创始人兼首席执行官Todd Papaioannou表示,作为一家初创企业,Continuuity正在试图掀起下一波大数据应用软件的浪潮,公司所提供的工具能够大大提高处于开发状态的软件不同部分与阶段的扩展性。
3. Flurry
Flurry是移动应用统计分析领域里的标杆,正因为在行业内独特的优势,它每年的营收高达一亿美元。Flurry拥有非常全面的功能,不仅仅只是帮助开发者构建移动应用,它还帮助开发者分析所有的数据,进而产生更大的效益。其实数据也支撑了该公司的广告网络,他们通过数据分析可以帮助开发者推送准确的广告到需要的用户面前。不过单纯从移动应用的数据统计功能来看,Flurry绝对是处于领先地位。其功能模块设置合理,分析维度全面,分析流程也易于理解。
4. Google Prediction API
Google Prediction API可能是最酷的工具了!Google Prediction API是一个基于云服务的机器学习工具,它可以帮助开发者分析数据,并为应用程序加入情感分析、反垃圾邮件、追加销售分析、识别可疑活动和诊断等功能。 这套API支持众多编程语言,比如.NET、Go 、Java、PHP、Ruby、Python、JavaScript、Objective-C以及应用脚本语言等。Google的开发者主页提供了相关的培训和开发指南,读者可以访问Prediction API介绍页面进行学习。
5. Infochimps
尽管Infochimps非常努力的想让自己成为一家企业级的IT公司,但是显然还有一定的差距。不过与公司同名的平台的确为开发者们带来了真正的价值。配置和管理大数据环境的工具称之为Wukong这是一个基于Ruby的命令行界面,开发者可以编写大数据应用调用Data Delivery Service或Hadoop,使用的语法也非常简单,开发者无需学习MapReduce或者Flume。Infochimps的首席战略官Dhruv Bansal介绍:常见的情况是,客户用Infochimps的平台开发程序处理分析数据,只有在需要批量分析海量数据时才会用到Hadoop。基于这种经验,他们的新版本关注的重点是对数据的实时处理功能(而不是Hadoop)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27