
大数据在互联网时代是敌是友_数据分析师培训
在互联网时代,数据是企业分析市场与选择企业战略的基础。由于互联网技术的发展,信息容量以几何级的速度增长,而各种相关收集数据的工具和各大网站自身在提供网络服务时顺带收集数据的技术也更加完善。使得各大企业收集数据更有时效性和快速性,然而网络是把双刃剑,在互联网时代,大数据是敌是友?
数据是研究的“生命之血”,现在对商业和工业来说,也同等重要。传感器网络等技术能够让我们以惊人的速度收集海量数据,这种数据的收集通常以非常复杂的方式进行。
从大数据集中提取信息的过程通常被称之为“数据挖掘”,整个过程就像从废料中搜寻宝贵的矿石。这种数据挖掘和分析能够让公司获得巨大优势,帮助他们更好地满足消费者的需求。
例如,百度在提供搜索服务的同时也在收集用户的信息,针对单个用户每天搜索的信息量即时推送相关搜索信息,实现精准化营销。但另一方面我们可以想象,我们每天获取的是相类似的信息,用户体验的提升方面一般比较差,面对海量信息陷入了一种搜索疲劳的状态。
然而信息的追求是滞后的且是相对真实的,它会受到客观技术条件和用户主观想象的偏差,所以,所有测量都存在不确定性或者实验误差。数据收集是一项昂贵的业务,所研发的相关工具允许实验人员以一种能够有效收集数据并在考虑不确定性情况下对数据进行分析的方式设计他们的实验。大数据世界发生的变化带来了研究和工业应用方面一系列新的可能性。直到最近,质量检验员在监视一条非纺织织物的生产线时还不得不停止生产,剪下一点检验抗张强度和孔隙率等性能。现在,质量检验员可以借助摄像头拍摄连续视频,而后利用相关算法对视频数据进行分析,检验这些参数。与少量数据相比,采用大数据技术对织物品质进行评估无疑拥有更大优势,在更大程度上确保产品质量。
大数据分析就是要钻进消费者的脑袋,了解他们的想法,以更好地满足他们的需要。
亚马逊和谷歌等信息服务提供商依靠先进的算法对大数据进行分析,例如根据消费者过去的购买行为准确预测图书、DVD等产品的销售前景。有效利用大数据的公司能够从中受益,做出正确的重要商业决策。也就是说,不拥抱大数据革命的公司可能品尝苦果。
大数据革命的受益者不仅仅是大公司。借助于获取和分析海量数据的能力,医疗卫生、环境保护、交通管理和很多科学研究领域都能成为受益者。医疗领域出现一门名为“生物信息学”的新学科。生物信息学技术允许研究人员在越发清晰的人类基因组图谱中搜寻,确定与特定基因构成和疾病有关的形态。在所谓的生物标记中锁定有害形态有助于医生更早预测疾病的产生,进而更早地采取对策,防止疾病形成。从这个意义上说,大数据技术能够扮演生命拯救者的角色。
不过,分析和利用大数据也存在自身问题。大数据分析需要采用严格的统计学方式,但分析技术的进步速度并没有跟上“数据海啸”的增长速度。对大数据的分析可能产生徒有其表的结果,例如亚马逊通过大数据分析认为你可能对一本书感兴趣,而实际情况却是,你对这本书没有丝毫兴趣。
如果仅限于此,问题也不是特别严重,但是,当类似这样具有欺骗性的联系导致不恰当的医疗诊断或信贷限制,或者一种算法错误地将你的电话或者网上活动与恐怖主义联系在一起,那就真的是个问题了。
对于大数据的使用,发起者应负起责任,解释收集数据的目的、过程以及用途。对于大数据的收集、存储、检索和分析,仍有很多东西有待我们去了解和学习。尽管用于数据挖掘的“机器学习”算法不断取得进步,但我们尚不十分清楚如何应对大数据的不确定性。也就是说,我们需要一种新的统计学方法,用于大数据的分析。没有新的统计学方法,我们便永远无法十分肯定我们可以相信并控制结果。
在这个信息爆炸的时代,数据已经不再是稀缺资源,我们在保证技术提升的同时也应该分析并甄别其中有用的信息作为企业决策的依据。正确的利用各种统计方法和互联网工具,最终达到提升用户体验的满意度的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30