
大数据在互联网时代是敌是友_数据分析师培训
在互联网时代,数据是企业分析市场与选择企业战略的基础。由于互联网技术的发展,信息容量以几何级的速度增长,而各种相关收集数据的工具和各大网站自身在提供网络服务时顺带收集数据的技术也更加完善。使得各大企业收集数据更有时效性和快速性,然而网络是把双刃剑,在互联网时代,大数据是敌是友?
数据是研究的“生命之血”,现在对商业和工业来说,也同等重要。传感器网络等技术能够让我们以惊人的速度收集海量数据,这种数据的收集通常以非常复杂的方式进行。
从大数据集中提取信息的过程通常被称之为“数据挖掘”,整个过程就像从废料中搜寻宝贵的矿石。这种数据挖掘和分析能够让公司获得巨大优势,帮助他们更好地满足消费者的需求。
例如,百度在提供搜索服务的同时也在收集用户的信息,针对单个用户每天搜索的信息量即时推送相关搜索信息,实现精准化营销。但另一方面我们可以想象,我们每天获取的是相类似的信息,用户体验的提升方面一般比较差,面对海量信息陷入了一种搜索疲劳的状态。
然而信息的追求是滞后的且是相对真实的,它会受到客观技术条件和用户主观想象的偏差,所以,所有测量都存在不确定性或者实验误差。数据收集是一项昂贵的业务,所研发的相关工具允许实验人员以一种能够有效收集数据并在考虑不确定性情况下对数据进行分析的方式设计他们的实验。大数据世界发生的变化带来了研究和工业应用方面一系列新的可能性。直到最近,质量检验员在监视一条非纺织织物的生产线时还不得不停止生产,剪下一点检验抗张强度和孔隙率等性能。现在,质量检验员可以借助摄像头拍摄连续视频,而后利用相关算法对视频数据进行分析,检验这些参数。与少量数据相比,采用大数据技术对织物品质进行评估无疑拥有更大优势,在更大程度上确保产品质量。
大数据分析就是要钻进消费者的脑袋,了解他们的想法,以更好地满足他们的需要。
亚马逊和谷歌等信息服务提供商依靠先进的算法对大数据进行分析,例如根据消费者过去的购买行为准确预测图书、DVD等产品的销售前景。有效利用大数据的公司能够从中受益,做出正确的重要商业决策。也就是说,不拥抱大数据革命的公司可能品尝苦果。
大数据革命的受益者不仅仅是大公司。借助于获取和分析海量数据的能力,医疗卫生、环境保护、交通管理和很多科学研究领域都能成为受益者。医疗领域出现一门名为“生物信息学”的新学科。生物信息学技术允许研究人员在越发清晰的人类基因组图谱中搜寻,确定与特定基因构成和疾病有关的形态。在所谓的生物标记中锁定有害形态有助于医生更早预测疾病的产生,进而更早地采取对策,防止疾病形成。从这个意义上说,大数据技术能够扮演生命拯救者的角色。
不过,分析和利用大数据也存在自身问题。大数据分析需要采用严格的统计学方式,但分析技术的进步速度并没有跟上“数据海啸”的增长速度。对大数据的分析可能产生徒有其表的结果,例如亚马逊通过大数据分析认为你可能对一本书感兴趣,而实际情况却是,你对这本书没有丝毫兴趣。
如果仅限于此,问题也不是特别严重,但是,当类似这样具有欺骗性的联系导致不恰当的医疗诊断或信贷限制,或者一种算法错误地将你的电话或者网上活动与恐怖主义联系在一起,那就真的是个问题了。
对于大数据的使用,发起者应负起责任,解释收集数据的目的、过程以及用途。对于大数据的收集、存储、检索和分析,仍有很多东西有待我们去了解和学习。尽管用于数据挖掘的“机器学习”算法不断取得进步,但我们尚不十分清楚如何应对大数据的不确定性。也就是说,我们需要一种新的统计学方法,用于大数据的分析。没有新的统计学方法,我们便永远无法十分肯定我们可以相信并控制结果。
在这个信息爆炸的时代,数据已经不再是稀缺资源,我们在保证技术提升的同时也应该分析并甄别其中有用的信息作为企业决策的依据。正确的利用各种统计方法和互联网工具,最终达到提升用户体验的满意度的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16