
征信进入大数据时代 需从完善立法入手
“中国征信体系的建设和发展不能完全参照美国经验,未来中国征信必将崛起于大数据网络时代。”金信网首席运营官安丹方日前在全球网贷行业盛会Lendit2015峰会上对记者表示,目前大数据征信的发展还存在数据缺失、隐私信息界定不明等问题,大数据征信的推进应以征信立法为先。
从去年开始,中国征信建设的节奏明显加快,央行先后对市场放开企业征信和个人征信。阿里的蚂蚁信用查分、腾讯微众银行的人脸识别贷款、拉卡拉的考拉评分等一系列基于大数据的征信产品陆续面市。一时间,获得牌照的民间企业开展大数据征信的宣传甚嚣尘上。
安丹方表示,将网络(社交、电商等)的数据纳入征信体系是中国征信业的一大进步,而未来征信领域最大的蓝海就在于大数据征信。“传统金融公司的征信更重视过往的记录,例如信用卡、资产和债务水平;而互联网的大数据征信则着重消费行为和消费者本身,我们分析其生活化数据,借以判断借款人是否有还款能力和还款意愿。从某种意义上来说,大数据征信会有更为广阔的应用场景。”
安丹方表示,大数据征信想要突破现有瓶颈,必须要从完善相关立法入手。
她举例说,2013年实施的《征信业管理条例》规定:金融信用信息基础数据库接收从事信贷业务的机构按照规定提供的信贷信息。按照条例,只要是放贷机构,都应该接入央行征信系统,但是监管层主流的意见认为P2P只是信息中介服务机构,不是金融机构,使得国内P2P平台直接接入征信系统可能存在障碍。
“虽然P2P不是放贷机构,但是运作着直接进行放贷的个人,作为平台运营的维护者,应该有义务报送信息,为让行业尽快接入央行,实现信息共享,调整法律条款迫在眉睫。”安丹方表示。
此外,她补充说,征信立法应该涉及很多方面:为了规范大数据征信,减少隐私侵害,《个人信息保护法》应尽快出台;针对数据缺失,大量原始数据分散在司法、工商等政府部门的情况,建立从立法层面使数据采集从私法授权的方式改为公权力授权,即当央行授予民间征信机构征信牌照之后,该机构即拥有央行的公权力授权,可以直接对接拥有原始数据的机关、企事业单位,但涉及法定的保密信息的除外。
“中国的征信必然会崛起于网络时代,但是需要完善相关法条保驾护航,否则大数据征信推进的越快,恐怕带来的隐患就越多。”安丹方建议,在中国征信体系尚未真正建立起来前,大数据征信应循序渐进的推进,平台可以把其作为风控的补充,但不宜完全依赖,就目前发展而言,以大数据征信为基础的大数据风控至少在短期内还无法取代以O2O为主的风控体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23