京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas快速处理大数据的使用技巧
用sas在做数据分析时,有很多朋友会遇到和我一样的问题吧,数据分析师在这里分享一下。1.测试代码的时候,可以从大数据集中抽取一部分数据来进行测试,而不比直接在大文件上全部进行测试。抽取数据这个有好多种方法常用的如使用obs=option选项,proc surveyselect进行分层抽样,利用种子产生随机数来抽取等等,反正怎么方便怎么取。如
或者
2.每个数据集最好只保留自己想要的变量,变量太多是会影响效率的,所以无关变量可以drop掉,或者keep想要的变量。
3.在对符合已知变量条件的记录进行处理时,果断先进行筛选,然后在进行处理。同时在 Data步建立新数据集,在进行的条件筛选中,where的效率比if高,因为where在读入的时候就已经进行判断,而if则是等到全部读完的时候才进行判断。如需对class数据集中的男生建立一个新变量weight_new,以下这种写法是不可取的。数据分析师培训
可以这么写
4.一些能省略的data步,如先经过data步进行简单的条件筛选,然后进行proc步的一些操作,诸如此类的data步,尽量省略吧。
完全可以这么写
5.需要修改数据集变量的label和format格式时,还是通过proc datasets过程进行修改效率比较快,它不需要记录进入pdv,比起data步更有效率。
6.纵向合并数据集时,如果生成的目标表就是来源表之一,那么proc append会比data步更有效率。
proc append和proc datasets中的append过程效率是一样的。
7.对于大数据集,一般都会讲数据集压缩,以节省存储空间,sas里可以通过options compress=yes;来进行压缩。
8.如果我们想要查看一个变量顶部5%的记录,可以通过proc rank一步实现,而不需先通过univariate过程先将p95分位数求出,然后赋值给宏变量,最后再回到数据集中筛选。
9.在编写一些proc步时,对于分组变量最好是用class而不用by,因为用by是得对分组变量进行排序的。
10.视图的应用。视图是一个虚拟表,其内容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查询所引用的表,并且在引用视图时动态生成。所以视图能够节省大量的空间,同时因为它不是以存储的形式存在,因此在一定程序上能够提高运行效率。如对生成的数据集进行means过程
11.format格式数据集的引用。比如说在信用卡交易数据集,每天的交易量都是很大的,同时包括境内境外交易,这时就存在币种转换问题。一张交易量很大的表,和一张币种汇率表,这时如果通过币种去连接两个数据集,首先得先对这两个数据集按币种排序,然后merge进行计算,当然有人想到直接用sql连接,不过这样消耗时间也都是非常大的。这时候就可以先将汇率表做成format的数据集形式,到时就可以直接使用了。如
注意format数据集的地址,如果非work逻辑库下,则需要加上这么一句话options fmtsearch=(逻辑库名称);
12.将数据集载入内存。该方法减少数据集内存分配和释放的次数,降低I/O处理量,提高SAS程序执行效率,但是相当消耗内存,需要确认系统有足够多的内存资源,同时在使用完后,要记得释放。具体形式如下
13.hash的应用。在data步中使用hash对象,不但可以快速有效地检索和读取数据,还可以实现数据集merge的功能,从而减少排序时间,提高了数据处理的能力,相对于merge,hash的效率更高,但是同时也很消耗内存,因此一般都是把小表放进hash中。如用前面汇率进行币种的连接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03