
畅想平台发力大数据 助力开发者放心掘金
在2014年,大数据概念深入大街小巷,从时政到民生无所不及。大数据仿佛成为无所不能的工具。移动广告一直靠数据吃饭,过去的时代,刷量严重,加上传统的移动广告展示形式有限,曾被周 鸿祎等大佬唱衰。但这两年时来运转,[大数据应用+移动端]组合能够识别融汇更多UV标识,更能动态地定位出用户适合的广告,反而是大数据最佳用武之地,于是各位大佬纷纷“打脸”,都放出自己的移动广告平台产品,这个行业所处的战略地位不言而喻。
提到大数据的应用,畅想移动广告平台副总经理刘君安认为要辩证看待,互联网行业人士要多操心,“移动设备的普及,成为记录人们日常行为的重要工具。手机上的操作,可以通过数据反馈出来。保护好用户的隐私和数据资产安全,是互联网公司都必须面对的课题。良好健康的行业状态,才能更好利用大数据为民服务,不为用户所反感。”
开发者的钱包数据变小了
国内相当大部分的开发者可是靠移动广告吃饭的。
大数据虽然美好,但是与移动广告平台休戚相关的开发者,你的收入涨了吗?多位开发者同行交流表示,很多老一代平台引入数据筛选、算法匹配后,和之前的收入相比,不约而同和有一(keng)些(die)的落差。
造成这个开发者收入的回落有两个原因,第一个是原因正面的、表面的——大数据应用,在一定程度上过滤掉刷出来的无效流量,保护广告主的利益。第二个原因很少移动广告平台会提及:各家平台接入的品牌广告主对广告资源的要求还是比较集中的,大部分开发者提供的广告请求在一定程度上被“冷落”,或被贱卖。
汽车、快消、日化、电商等巨头是品牌广告的大金主,他们在广告投入方面出手阔绰,而其提出的要求,也会尽可能地被满足——对投放的APP类别进行筛选,还会对提供LBS、机型、系统等标签提出进一步要求。
比如一个汽车品牌:它要找的UV的标识为:一、二线城市,中高档机型、娱乐认知程度较高,同时它会选择新闻类应用、职业教育类应用来作为优先投放的APP,而不会很情愿在手游APP进行海投。作为开发者,若你的广告请求更加迎合大金主胃口,那么广告平台拆分给你的利润会很可观,反之,在大数据算法优化的过渡时期,你的广告请求一定程度上实际填充率和卖出价格都会受到影响。
从长期来看,大数据算法,对于应用受众进行分类,通过建模优化匹配到不同的广告,它优化的不是一些特定的配对,而是资源的整体,特殊的要求技术人员建立小模型去满足,而核心模型具备离线处理、不断自动学习、识别出有价值的配对的功能。
目前处于移动广告平台结构变化的过渡阶段,开发者收益的波动是难免的,但仍然是利好的。它说明正规的移动广告平台基本已经渡过了刷量,扣量,贴现烧钱等原始竞争,其广告贡献不再局限于应用冲榜。
活用大数据,开发者和广告平台要双赢
畅想平台副总经理刘君安提到:“你是什么样的开发者,就有适合你的服务,将共有的逻辑做到极致了,才是开发者和广告平台配对的双赢。”
作为开发者,特别是小的开发团队,还是需要务实再务实,选择能接地气的,把行内广告服务做到极致的移动广告平台。
第一要看移动广告平台跟你对接广告主的环节。免费应用现已成为吸量主力,它们在下载激活直接闭环,对比其他的应用或服务,避免了很多计费单元的流失;而从用户的需求考虑,大众向应用更能吸量,比如一些图片美化、团购工具、休闲益智游戏、棋牌等;同时,广告主提供的安装包要足够小,让用户能在2分钟内轻松下载激活。一个移动广告平台,在招徕广告主的时候,怎么说的,怎么做的,怎么想的都能影响开发者收益。
第二看CTR优化,基于CTR预估的广告匹配模式。刘君安强调:“移动广告大数据的运用是人性化的,动态的,强调对用户的行为习惯、周期的预判,而不是简单的统计对应。比方一个用户在中午会短时间习惯性打开某团购应用。我们的SDK在晚上临睡时间不会跟其推荐同类团购应用,而是推荐休闲游戏,而这样推荐转化效率会更高,而不像PC端常出现的那种反复的无视用户实际的同类产品骚扰。”
“在目前阶段,有时候大框架的算法/复杂模型,并不比经验总结的大量简单模型组合有效,同一类配对我们会比较选取回归系数高的方案”。
提升数据敏捷性是利用大数据技术的关键。刘君安提到,高强度的事件和数据的实时持续访问和精确处理,如何保持稳定的状态和有效率的处理方案。当用户偏好、市场条件、竞争行为和操作状态发生变化时,如何快速适应和响应,是畅想平台在2015年格外注重的课题。
的确,在移动流量转化这个讲求效率的细分市场,开发者——无论是创业排头兵,还是背靠巨头的团队,或是中段位中产开发者,还是创业初期的小团队,甚至是打包党,都有自己生存状态和发展策略。要靠移动广告来谋利,大数据在匹配广告和用户,而我们开发者则是在找最匹配的移动广告平台。在已经被千万企业提及的“大数据”概念中,如何从迷雾中真正抓到实质,值得每个看热闹的人真正不嫌“事大”!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08