
机构兵分四路 大数据成互联网+发动机
经过多年的积累,大数据已经成为网络公司最重要的资产,通过对大数据资源的开发,“互联网+”才能水到渠成。当前最重要的大数据资源中,主要包括四个方面:政府部门积累的大数据、掌握大量数据的金融部门、电信运营商、商业数据。而从机构对大数据的投资布局看,已经兵分多路,对占据大数据资源的诸多上市公司进行了前瞻性的布局。
进入2015年以来,新兴产业概念股一飞冲天,尤其是在两会上热议的“互联网+”概念推动下,代表新兴产业的创业板指年内最高涨幅超过75%。在业内人士看来, 经过多年的积累,大数据已经成为网络公司最重要的资产,通过对大数据资源的开发,“互联网+”才能水到渠成。而从机构对大数据的投资布局看,已经兵分多路,对占据大数据资源的诸多上市公司进行了前瞻性的布局。
大数据将造千亿级市场
两会上热议的“互联网+”战略,从去年余额宝的推出就开始受到了关注。在大数据开发热潮引领下,互联网与传统产业的深度融合带来巨大的市场,不少上市公司脱离原有板块,进行跨界、转型以及融合,形成新的业态、估值体系。在业内人士看来,网络开放、平等、透明度高等特性,让信息及数据在工业社会中被压抑的巨大潜力爆发出来,转化成巨大生产力,成为社会财富增长的新源泉,改变生活和生产,从而带来大数据的黄金时代。
事实上,从大数据目前开发情况看,已经开始向各个行业扩散与渗透,通过大数据,创造了新的需求及预测未来,进行资源合理分配,最终使社会效率获得提升。
沪上某基金公司研究员表示,目前所有的网络公司本质上已经是大数据公司,大数据已经成为网络公司最核心的资产,未来大数据的价值挖掘及变现将会得到充分利用,这将造就千亿级以上的市场,相应的也会诞生大量的投资机会。
机构重兵布局大数据
从机构对大数据的投资情况看,已经兵分几路开展布局。在当前最重要的大数据资源中,主要包括四个方面:
首先是政府部门积累的大数据,不仅包括国家经济社会等众多领域的核心真实信息,也包括每一个人的个人身份信息,还有涉及交通、公安、行业监管等各部门的数据,这些数据如果得到开发,都将是掘之不尽的金矿。从机构布局看,拥有纳税信息的航天信息,在2014年底吸引186家机构抱团入驻;为国家有关部门提供计算机信息服务的太极股份,吸引了88家机构密集布局,为人力资源和社会保障提供自助服务一体机服务的易联众,吸引了15家机构持有等。
第二个掌握大量数据的是金融部门。金融部门掌握了国计民生的所有金融交易数据,如果上述数据得到有效的开发,空间难以想象。在沪上某基金公司投资总监看来,银行占有巨大的资源,如果这些资源得到充分开发,银行的估值体系将得到很大提升,“但从目前来看,银行传统业务盈利非常容易,还没有动力去进行充分开发,如果把银行掌握的数据交给其它上市公司,资本市场绝对会给非常高的估值。”
第三个重要的大数据资源来源于电信运营商。中信建设分析师武超则认为,电信运营商通过多年的经营,积累了庞大的数据资源。随着语音业务的逐渐降价,数据流量经营将成为运营商的主要方向,运营商拥有任何移动互联网公司都无法比拟的海量数据,由语音经营走向流量经营进而进入大数据运营已成为大势所趋,空间巨大。从机构布局看,从事移动转售业务并发力移动互联的天音控股,被37家机构同时持有;在电信网络管理领域有优势的亿阳信通,也被31家机构同时持有,其中不少基金为去年四季度新进入驻。
最后一个大数据资源是商业数据,不管是阿里巴巴平台上的交易数据,还是上海钢联、生意宝等公司上的交易数据,都存在其它领域变现的可能。数据显示,目前有多达69家机构持有上海钢联,持有怡亚通的机构也高达61家,而与阿里巴巴等平台合作的公司都被赋予了较高的估值。
在业内人士看来,在互联网推动社会发展一日千里的情况下,通过大数据创造需求及预测未来,进行资源合理分配,最终使社会效率获得提升,本质上也是反映了资本市场炒作逻辑,在构建“财、物、信息”富有价值的“关系与关联”中,去进行二级市场的投资。
事实上,基金公司也在开发大数据资源,进行有针对性的产品开发。目前南方基金与新浪财经、百度与广发基金、博时基金和蚂蚁金服等都已经开发或者正在开发相应的基金产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07