
机构兵分四路 大数据成互联网+发动机
经过多年的积累,大数据已经成为网络公司最重要的资产,通过对大数据资源的开发,“互联网+”才能水到渠成。当前最重要的大数据资源中,主要包括四个方面:政府部门积累的大数据、掌握大量数据的金融部门、电信运营商、商业数据。而从机构对大数据的投资布局看,已经兵分多路,对占据大数据资源的诸多上市公司进行了前瞻性的布局。
进入2015年以来,新兴产业概念股一飞冲天,尤其是在两会上热议的“互联网+”概念推动下,代表新兴产业的创业板指年内最高涨幅超过75%。在业内人士看来, 经过多年的积累,大数据已经成为网络公司最重要的资产,通过对大数据资源的开发,“互联网+”才能水到渠成。而从机构对大数据的投资布局看,已经兵分多路,对占据大数据资源的诸多上市公司进行了前瞻性的布局。
大数据将造千亿级市场
两会上热议的“互联网+”战略,从去年余额宝的推出就开始受到了关注。在大数据开发热潮引领下,互联网与传统产业的深度融合带来巨大的市场,不少上市公司脱离原有板块,进行跨界、转型以及融合,形成新的业态、估值体系。在业内人士看来,网络开放、平等、透明度高等特性,让信息及数据在工业社会中被压抑的巨大潜力爆发出来,转化成巨大生产力,成为社会财富增长的新源泉,改变生活和生产,从而带来大数据的黄金时代。
事实上,从大数据目前开发情况看,已经开始向各个行业扩散与渗透,通过大数据,创造了新的需求及预测未来,进行资源合理分配,最终使社会效率获得提升。
沪上某基金公司研究员表示,目前所有的网络公司本质上已经是大数据公司,大数据已经成为网络公司最核心的资产,未来大数据的价值挖掘及变现将会得到充分利用,这将造就千亿级以上的市场,相应的也会诞生大量的投资机会。
机构重兵布局大数据
从机构对大数据的投资情况看,已经兵分几路开展布局。在当前最重要的大数据资源中,主要包括四个方面:
首先是政府部门积累的大数据,不仅包括国家经济社会等众多领域的核心真实信息,也包括每一个人的个人身份信息,还有涉及交通、公安、行业监管等各部门的数据,这些数据如果得到开发,都将是掘之不尽的金矿。从机构布局看,拥有纳税信息的航天信息,在2014年底吸引186家机构抱团入驻;为国家有关部门提供计算机信息服务的太极股份,吸引了88家机构密集布局,为人力资源和社会保障提供自助服务一体机服务的易联众,吸引了15家机构持有等。
第二个掌握大量数据的是金融部门。金融部门掌握了国计民生的所有金融交易数据,如果上述数据得到有效的开发,空间难以想象。在沪上某基金公司投资总监看来,银行占有巨大的资源,如果这些资源得到充分开发,银行的估值体系将得到很大提升,“但从目前来看,银行传统业务盈利非常容易,还没有动力去进行充分开发,如果把银行掌握的数据交给其它上市公司,资本市场绝对会给非常高的估值。”
第三个重要的大数据资源来源于电信运营商。中信建设分析师武超则认为,电信运营商通过多年的经营,积累了庞大的数据资源。随着语音业务的逐渐降价,数据流量经营将成为运营商的主要方向,运营商拥有任何移动互联网公司都无法比拟的海量数据,由语音经营走向流量经营进而进入大数据运营已成为大势所趋,空间巨大。从机构布局看,从事移动转售业务并发力移动互联的天音控股,被37家机构同时持有;在电信网络管理领域有优势的亿阳信通,也被31家机构同时持有,其中不少基金为去年四季度新进入驻。
最后一个大数据资源是商业数据,不管是阿里巴巴平台上的交易数据,还是上海钢联、生意宝等公司上的交易数据,都存在其它领域变现的可能。数据显示,目前有多达69家机构持有上海钢联,持有怡亚通的机构也高达61家,而与阿里巴巴等平台合作的公司都被赋予了较高的估值。
在业内人士看来,在互联网推动社会发展一日千里的情况下,通过大数据创造需求及预测未来,进行资源合理分配,最终使社会效率获得提升,本质上也是反映了资本市场炒作逻辑,在构建“财、物、信息”富有价值的“关系与关联”中,去进行二级市场的投资。
事实上,基金公司也在开发大数据资源,进行有针对性的产品开发。目前南方基金与新浪财经、百度与广发基金、博时基金和蚂蚁金服等都已经开发或者正在开发相应的基金产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23