京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社会化媒体与大数据爆炸时代的营销
大公司有关消费者的数据已经达到200T,在社交网络流行的背景下(Facebook、Twitter、Foursquare、Pinterest、Instagram)社会化媒体数据更是如洪水般泛滥,数据大爆炸已到达失控的地步。
如何处理这些数据?如何存储?如何行动?如何分析利用?交易数据、个人信息等结构化数据还好说 ,这些传统的分析工具尚能够应付。但社会化媒体数据基本上是非结构化的数据,所以很难分析。也没有标记系统让我们通过分析工具来利用社会化媒体数据。单靠个人是无法分析这种规模的数据的。
新的形势需要靠训练有素的团队来利用社会化媒体数据。这个团队应该像一支管弦乐队一样。要有一个指挥来制定社会化媒体计划,这名指挥应该熟悉公司的各种流程。但是这位指挥如何才能够知道何时改变策略、何时作出相应行动,何时解除行动,如何确定Facebook上面的“like”对于品牌的意义是什么?如果在社会化媒体网站上面请消费者帮助开发新产品,是不是有手段能够真正分析其提供的信息并概括出有助于推进研发的要点?还是说这一系列的问题最终都没有答案—就像大多数的数据一样,只是被存了起来却没有被好好利用。
过去大部分数据都是结构化的,所以可以分析和利用。但社会化媒体数据完全不同,用户跟品牌的交互是在自己的社会化媒体模式驱动下进行的。社会化媒体属于一种独立的营销领域,甚至跟网站都不一样,属于一种在兴奋作用下的口碑传播。
此外,现在消费者跟品牌的交互方式越来越多是通过移动社会化媒体,在本地化的层次上进行的,这又给数据增加了一个维度。有多少公司在消费者从“喜欢”你的品牌转向利用品牌创建的app观看品牌电视广告然后拿起电话给客户服务致电时跟踪过消费者并分析其行为呢?这就是消费者跟品牌的交互方式,这么多的步骤往往几分钟之内就完成了。
但是,即便消费者已经无缝地转移到这个移动社会化媒体世界里,Organic还是处于有针对性地部署员工的早期阶段,更不用说分析社会化媒体数据了。现在Organic专门雇人跟踪Facebook的内容,并且把他们的1-800外包给了印度。对于来自社会化媒体的数据洪流以及这些数据如何与其他的客户跟品牌公司接触点相关联,我们需要有一个健壮的系统来进行分析(Organic已经为此开发了Connection Index)。
如果希望让这些数据物尽其用,就得不断地给营销队伍增加技术人员。数据库管理需要一个能干的人手才能把所有的数据都转化为能够分析的形式。还有,能够理解数据及其影响的统计分析人员也不可或缺。要有熟练掌握行为数据的人。从社会化媒体接收到的数据跟此前采集的静态的、事务性数据是很不一样的。社会化媒体数据是非结构化的、流动的、移动化的,而且往往是相互矛盾的。此外,还需要雇用懂得如何对这些数据进行标记的人,把它们结构化以便统计分析人员和数据库专家能够加以研究,再让营销人员将其转化为可行动的品牌战略。
这项任务不能够扔给传统上负责社会化媒体的营销人员。仅仅得出一个结论说YouTube上有了1000万的展示量已经不够了。这只能够反映有人在唠叨你的品牌。很快CFO就会要求说社会化媒体渠道也要有ROI(投资回报率)。如果你没有完成销售目标,财务不会关心有没有人在YouTube上看你的视频或者把你添加到自己的Pinterest板墙上。没有收入,絮叨就只是絮叨而已。
为了满足这些ROI的要求,需要把社会化媒体转化为可以指导行动的数据,否则的话,最终就只会伤害品牌而非帮助品牌。营销活动的圣杯一直都是创造出有实用价值的感情投入。社会化媒体有能力将消费者与品牌以比最好的口口相传还要好的效果联系到一起。但是我们还是需要知道那些感情是不是被转化成了利润。
Ps.此文是Omnicom Group旗下的数字广告代理部门Organic(Organic的客户包括Kimberly-Clark、克莱斯、美国运通、索尼 PS、Sprint及二十世纪福克斯公司等。)的CEO Marita Scarfi的一篇文章,里面谈到了社会化媒体对营销活动的影响以及新形势下的要求,此文有助于了解广告公司在新形势下应该如何运作营销活动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22