京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社会化媒体与大数据爆炸时代的营销
大公司有关消费者的数据已经达到200T,在社交网络流行的背景下(Facebook、Twitter、Foursquare、Pinterest、Instagram)社会化媒体数据更是如洪水般泛滥,数据大爆炸已到达失控的地步。
如何处理这些数据?如何存储?如何行动?如何分析利用?交易数据、个人信息等结构化数据还好说 ,这些传统的分析工具尚能够应付。但社会化媒体数据基本上是非结构化的数据,所以很难分析。也没有标记系统让我们通过分析工具来利用社会化媒体数据。单靠个人是无法分析这种规模的数据的。
新的形势需要靠训练有素的团队来利用社会化媒体数据。这个团队应该像一支管弦乐队一样。要有一个指挥来制定社会化媒体计划,这名指挥应该熟悉公司的各种流程。但是这位指挥如何才能够知道何时改变策略、何时作出相应行动,何时解除行动,如何确定Facebook上面的“like”对于品牌的意义是什么?如果在社会化媒体网站上面请消费者帮助开发新产品,是不是有手段能够真正分析其提供的信息并概括出有助于推进研发的要点?还是说这一系列的问题最终都没有答案—就像大多数的数据一样,只是被存了起来却没有被好好利用。
过去大部分数据都是结构化的,所以可以分析和利用。但社会化媒体数据完全不同,用户跟品牌的交互是在自己的社会化媒体模式驱动下进行的。社会化媒体属于一种独立的营销领域,甚至跟网站都不一样,属于一种在兴奋作用下的口碑传播。
此外,现在消费者跟品牌的交互方式越来越多是通过移动社会化媒体,在本地化的层次上进行的,这又给数据增加了一个维度。有多少公司在消费者从“喜欢”你的品牌转向利用品牌创建的app观看品牌电视广告然后拿起电话给客户服务致电时跟踪过消费者并分析其行为呢?这就是消费者跟品牌的交互方式,这么多的步骤往往几分钟之内就完成了。
但是,即便消费者已经无缝地转移到这个移动社会化媒体世界里,Organic还是处于有针对性地部署员工的早期阶段,更不用说分析社会化媒体数据了。现在Organic专门雇人跟踪Facebook的内容,并且把他们的1-800外包给了印度。对于来自社会化媒体的数据洪流以及这些数据如何与其他的客户跟品牌公司接触点相关联,我们需要有一个健壮的系统来进行分析(Organic已经为此开发了Connection Index)。
如果希望让这些数据物尽其用,就得不断地给营销队伍增加技术人员。数据库管理需要一个能干的人手才能把所有的数据都转化为能够分析的形式。还有,能够理解数据及其影响的统计分析人员也不可或缺。要有熟练掌握行为数据的人。从社会化媒体接收到的数据跟此前采集的静态的、事务性数据是很不一样的。社会化媒体数据是非结构化的、流动的、移动化的,而且往往是相互矛盾的。此外,还需要雇用懂得如何对这些数据进行标记的人,把它们结构化以便统计分析人员和数据库专家能够加以研究,再让营销人员将其转化为可行动的品牌战略。
这项任务不能够扔给传统上负责社会化媒体的营销人员。仅仅得出一个结论说YouTube上有了1000万的展示量已经不够了。这只能够反映有人在唠叨你的品牌。很快CFO就会要求说社会化媒体渠道也要有ROI(投资回报率)。如果你没有完成销售目标,财务不会关心有没有人在YouTube上看你的视频或者把你添加到自己的Pinterest板墙上。没有收入,絮叨就只是絮叨而已。
为了满足这些ROI的要求,需要把社会化媒体转化为可以指导行动的数据,否则的话,最终就只会伤害品牌而非帮助品牌。营销活动的圣杯一直都是创造出有实用价值的感情投入。社会化媒体有能力将消费者与品牌以比最好的口口相传还要好的效果联系到一起。但是我们还是需要知道那些感情是不是被转化成了利润。
Ps.此文是Omnicom Group旗下的数字广告代理部门Organic(Organic的客户包括Kimberly-Clark、克莱斯、美国运通、索尼 PS、Sprint及二十世纪福克斯公司等。)的CEO Marita Scarfi的一篇文章,里面谈到了社会化媒体对营销活动的影响以及新形势下的要求,此文有助于了解广告公司在新形势下应该如何运作营销活动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01