
社会化媒体与大数据爆炸时代的营销
大公司有关消费者的数据已经达到200T,在社交网络流行的背景下(Facebook、Twitter、Foursquare、Pinterest、Instagram)社会化媒体数据更是如洪水般泛滥,数据大爆炸已到达失控的地步。
如何处理这些数据?如何存储?如何行动?如何分析利用?交易数据、个人信息等结构化数据还好说 ,这些传统的分析工具尚能够应付。但社会化媒体数据基本上是非结构化的数据,所以很难分析。也没有标记系统让我们通过分析工具来利用社会化媒体数据。单靠个人是无法分析这种规模的数据的。
新的形势需要靠训练有素的团队来利用社会化媒体数据。这个团队应该像一支管弦乐队一样。要有一个指挥来制定社会化媒体计划,这名指挥应该熟悉公司的各种流程。但是这位指挥如何才能够知道何时改变策略、何时作出相应行动,何时解除行动,如何确定Facebook上面的“like”对于品牌的意义是什么?如果在社会化媒体网站上面请消费者帮助开发新产品,是不是有手段能够真正分析其提供的信息并概括出有助于推进研发的要点?还是说这一系列的问题最终都没有答案—就像大多数的数据一样,只是被存了起来却没有被好好利用。
过去大部分数据都是结构化的,所以可以分析和利用。但社会化媒体数据完全不同,用户跟品牌的交互是在自己的社会化媒体模式驱动下进行的。社会化媒体属于一种独立的营销领域,甚至跟网站都不一样,属于一种在兴奋作用下的口碑传播。
此外,现在消费者跟品牌的交互方式越来越多是通过移动社会化媒体,在本地化的层次上进行的,这又给数据增加了一个维度。有多少公司在消费者从“喜欢”你的品牌转向利用品牌创建的app观看品牌电视广告然后拿起电话给客户服务致电时跟踪过消费者并分析其行为呢?这就是消费者跟品牌的交互方式,这么多的步骤往往几分钟之内就完成了。
但是,即便消费者已经无缝地转移到这个移动社会化媒体世界里,Organic还是处于有针对性地部署员工的早期阶段,更不用说分析社会化媒体数据了。现在Organic专门雇人跟踪Facebook的内容,并且把他们的1-800外包给了印度。对于来自社会化媒体的数据洪流以及这些数据如何与其他的客户跟品牌公司接触点相关联,我们需要有一个健壮的系统来进行分析(Organic已经为此开发了Connection Index)。
如果希望让这些数据物尽其用,就得不断地给营销队伍增加技术人员。数据库管理需要一个能干的人手才能把所有的数据都转化为能够分析的形式。还有,能够理解数据及其影响的统计分析人员也不可或缺。要有熟练掌握行为数据的人。从社会化媒体接收到的数据跟此前采集的静态的、事务性数据是很不一样的。社会化媒体数据是非结构化的、流动的、移动化的,而且往往是相互矛盾的。此外,还需要雇用懂得如何对这些数据进行标记的人,把它们结构化以便统计分析人员和数据库专家能够加以研究,再让营销人员将其转化为可行动的品牌战略。
这项任务不能够扔给传统上负责社会化媒体的营销人员。仅仅得出一个结论说YouTube上有了1000万的展示量已经不够了。这只能够反映有人在唠叨你的品牌。很快CFO就会要求说社会化媒体渠道也要有ROI(投资回报率)。如果你没有完成销售目标,财务不会关心有没有人在YouTube上看你的视频或者把你添加到自己的Pinterest板墙上。没有收入,絮叨就只是絮叨而已。
为了满足这些ROI的要求,需要把社会化媒体转化为可以指导行动的数据,否则的话,最终就只会伤害品牌而非帮助品牌。营销活动的圣杯一直都是创造出有实用价值的感情投入。社会化媒体有能力将消费者与品牌以比最好的口口相传还要好的效果联系到一起。但是我们还是需要知道那些感情是不是被转化成了利润。
Ps.此文是Omnicom Group旗下的数字广告代理部门Organic(Organic的客户包括Kimberly-Clark、克莱斯、美国运通、索尼 PS、Sprint及二十世纪福克斯公司等。)的CEO Marita Scarfi的一篇文章,里面谈到了社会化媒体对营销活动的影响以及新形势下的要求,此文有助于了解广告公司在新形势下应该如何运作营销活动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01