京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代"眼睛"无处不在,想保护个人信息?难
中国已经进入了真正意义上的移动互联网时代,终端的便携性决定了移动互联网和PC时代互联网本质的不同。手机、Pad、可穿戴设备等便携智能终端与人寸步不离,随着人的移动而移动,网络因而变得无处不在。
移动互联网时代改变了人们的生活习惯和行为模式——今天,人们已经习惯在移动终端上看新闻、聊微信和逛淘宝。
目前,手机在中国的普及率已经超过了百分之百,平均每个人拥有一部以上的手机。如果再加上Pad、可穿戴设备、笔记本电脑,全国范围内可以登录移动互联网的设备数量将是一个天文数字。
同时,OTT的兴起使得互联网业务如雨后春笋层出不穷。这些业务除了获取用户的身份、位置、银行账号等个人信息以外,本身还会产生大量个人信息,比如使用服务的日志信息和内容信息。
移动互联网的负外部性:谁都可以获取你的个人信息
移动互联网的无处不在,使得个人信息的收集和利用行为无处不在。海量的智能终端设备和业务应用,则进一步增加了个人信息保护的难度。在移动互联网时代,个人信息的保护正遭受着严峻的挑战。
电信运营商和互联网服务提供者为了向用户提供通信和各种各样的互联网服务,每时每刻都要获取海量的来自终端和用户的信息。
比如,电信运营商需要实时采集每一台接入网络的智能终端的使用行为,包括设备的识别编码、此时此刻的位置和移动轨迹、正在进行的通话或者正在使用的互联网服务、使用的IP地址和浏览网站的IP地址、发生的数据流量等等。不采集这些信息,用户就无法使用通信服务。如果对这些实时数据和历史数据进行适当的分析,便不难发现用户规律性的行动轨迹、经常使用的APP种类、不同终端在位置和时间上的耦合关系等,进而对用户的工作单位、生活习惯、兴趣爱好、职业特点、消费偏好乃至身份关系在一定程度上作出推断。例如一个用户经常使用同花顺的软件,他有很大概率是一个股民。
相较电信运营商而言,互联网服务提供者获取用户信息的途径更加多样化,获取的信息内容也更加丰富。
比如支付宝等第三方支付应用可以获取用户的银行账号和密码,并掌握通过该软件发生的每一笔账务往来信息;一款地图导航软件甚至在用户不使用导航服务时也可以持续获取用户的位置信息,只要用户曾经使用过它并且没有取消提供位置信息的许可。
越来越多的软件要求绑定手机号码、银行账户、身份证号码等个人信息。尽管工信部出台的《电信和互联网服务用户个人信息保护规定》里要求获取用户信息必须以“提供服务所必需”为限,但互联网服务的可拓展性使得“必需”的标准变得动态而宽泛。
实践中,大量的软件都通过征得用户同意来合法获取为提供当前服务所不必要的用户个人信息。比如一个阅读软件也会要求获取用户的位置信息,部分软件甚至还将用户是否提供不必要的个人信息作为能否使用服务的前提条件。
实际上,移动互联网时代能够获取用户个人信息的主体远不止电信运营商和互联网服务提供者。随着人们生活方式和社会组织运行方式的互联网化,通过互联网获取个人信息的主体也越来越多样化。
比如手机的操作系统会将很多信息实时或者定期地提供给它的制造商或者操作系统开发者。
又比如在一个简单的网购行为中,除了电信运营商和网购平台之外,能获取个人信息的至少还包括卖家、物流公司,甚至包括保险公司。
从行业来看,包括电信和互联网、商贸流通、物流配送、金融保险;从企业性质来看,可能包括国企、外企、民企甚至个体工商户。
上面的例子有一个共同的特点,就是这些个人信息都是采集方合法获取、经过用户同意的。其中大部分都是服务所必需的,不获取这些信息将无法为用户提供服务。
然而,在巨大的商业利益诱惑面前,通过第三方插件、恶意程序、非法后门、商业购买等手段非法获取个人信息的情况更是比比皆是、屡禁不止。
可见,在移动互联网时代,个人信息安全保护形势异常严峻。移动互联网时代的生活便利是以个人隐私和财产的安全风险为代价。这是移动互联网发展带来的负外部性,不以人的意志为转移。
去身份化?面对大数据也许只是徒劳
应对这种情况,我们首先想到的会是信息的去身份化。很多国家的法律也是主要从去身份化入手规范个人信息利用的。但实践中,去身份化的努力正在政策、业务和技术三个层面受到冲击,其中尤以大数据时代的技术冲击最为深刻、猛烈。
首先,在政策上,手机和部分互联网业务的实名制使得终端和业务与个人身份绑定的基础越来越牢固。
其次,在业务上,第三方支付等应用的兴起绑定了越来越多的银行账号,存款实名制二十多年的实施成果和人们对财产利益的关注,使电信和互联网业务由形式实名迅速转向实质实名。
最后,也是最重要的,大数据时代的海量数据和高度发达的数据分析技术,使得去身份化的信息经过不同分析、对比、组合能够重新恢复身份化,并识别出更多的内容。
这三个方面的变化不仅冲击着去身份化的努力,也从整体上对大数据时代的个人信息保护法律构成了挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22