
移动大数据的三大核心 实时、适时、全时
我们应该清醒认识到,商业的基础正因移动互联网的普及而改变。
美国一家初创公司Appsee提供的移动产品分析中有些功能很有意思。 例如使用“use recording”(注意不是收集)录下用户使用app时的行为包括点击、滑动、 放大、摇一摇等各种动作, 通过动作了解用户兴趣、意向和需要。
移动带来的变革远远超过数据分析,但最为敏感的可能就是数据分析了。如今,你是否已经用全新的角度去思考无线业务做得好不好?移动大潮之下,每个公司都要从上到下重新思考。
不过,当数据从传统桌面计算机转到移动终端时,我们往往会遇到两大误区:
第一个误区:把手机当作一个新增的媒体渠道
把手机当作类似另一个屏幕,这是完全不够的。手机上作为一个功能设备产生的行为数据,不仅仅有时间维度,还有空间维度和社交维度,这么多维度迭加在一起,分析的层面和方式也远远多于传统网页。
第二个误区:用同样的方式来考评桌面计算机和移动终端;
在桌面计算机上,我们更关注流量转换的指标;而移动终端更在乎的是参与度,例如用户在一个app的停留时间、是否愿意接收提示、版本更新等。手指讯息如点击、滑动、 放大、摇一摇等在无线时代均会成为关键。
3T是移动数据的核心
跟大数据的4V(巨量、多样、速度、价值)比较,移动大数据的核心更着重于:实时 (real time)、适时 (right time)、全时 (all the time)。任何一个完整的高效服务都离不开这3个T。
拿零售业作例子,Real time是指实时数据的获取和推送能力;未来我们将通过手机,或者是智能穿戴设备赢得越来越多「接触」用户的机会。这些机会将为我们提供大量的时空讯息,将每一刻感知到的用户数据延续,就是 all the time 。
但有了这种感知的能力之后,你怎么知道甚么时候是推荐服务的最佳时机 (right time) 呢?这时就必须要有all the time的数据收集,才会知道用户的需求规律,才会知道营销的关键点并做到有效触达。
只有在俱备三个T的能力下,你才能明确在甚么地方,甚么时间点,给甚么样的用户,甚么样的特别优惠。因为你已经熟知用户的过往购买习惯、消费习惯,甚至行路习惯,所以才会知道,明天下午一点半,推荐一杯半价咖啡给他将是非常有效的促销方式。
全新的数据关系
最大的数据来自最小的设备。手机会变的越来越智能,他可以“感受”,可以处理文字图像,可以通过网络连接你身边的一切。这是最完美的集中,这不是一种创新,而是一群创新。
未来没有谁会比手机更了解你,它甚至会了解你的情绪,超出了自然语言。手机将会成为你的数据收集者,也会成为你的数据守门员。手机可以判断可以将哪些数据分享给哪些商家。而商家自己都不用建立数据库,它的数据存在每个人的云空间,只要被授权就可以拿出来使用。
这将会是用户、数据和商家之间一种全新的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23