
阿里大数据有多少肉多少壳_数据分析师培训
去年,阿里巴巴举办了一次天猫算法推荐大赛,其中6名大学生组成的团队拿走了100万元的头奖,他们设计的算法效率超过了阿里巴巴工程师16.9%,这套算法随机被运用到去年的“双11”中,让商品推荐变得更加准确。最近,阿里巴巴投入1500万元启动一个代号为“天池”的数据竞赛,选手们比拼如何利用现有大数据进行淘宝女装搭配的算法推荐、余额宝资金的进出预测等。去年比赛时有7276支队伍参加,明年将是虾米音乐等课题的推荐大赛,每年阿里巴巴投资1500万元推动大数据运用比赛,一来是招揽人才,二来是推动大数据生态建设,三来是创新产品的商业化应用。但是,笔者认为,大数据里面是即有肉又有壳,鱼龙混杂,阿里大数据有多少肉多少壳呢?
的确,根据消费者的购买产品、下载数据、点击产品,基本上能够推断出消费者的喜好,然后进行准进营销,比如推荐对口产品,有的根据这种特点进行大促销精准发送信息。这是大数据的肉,北京大悦城做这方面、小米做这方面挖到肉了。但是,大数据也有壳,下面细说。
1、过去消费者上网是通过台式电脑,这就是唯一的入口。现在可以是智能手机入口、平板电脑入口、智能电视入口、智能穿戴入口,变成用户信息碎片化,而且数据更加分散化了。如果按原来的台式机电脑用户或原来的购买网址投放广告或推荐产品,就没有多大效果了。
2、由于现在网上流行买一件是原价,买两件是另一个低价格,买五件单价更低,等等。如此就造成很多同事或邻居或朋友一起合起来买,但是购买者,这次是你,下次是他,再下次是我,如此变成网站推荐、广告投放没有意义了。
3、反腐让原来的许多高端消费者石沉大海,因为市场没有了,数据变成枯萎了。
4、由于审美口味的变迁,原来的款式、色彩已经不喜欢了,比如原来男装喜欢素装,现在喜欢女性化男装了。原来喜欢宽松,现在喜欢紧贴身体的服装了。女性原来喜欢紧贴身体体现出曲线美,现在喜欢宽松的服装了,说什么把胸部从紧绷的包围中解放出来,有利于乳房的发育、饱满。过去的数据没有意义了,如果根据过去的数据进行精准投放,结果都弄反了。
5、过去的认识能力有限,很多消费品购买了。由于认识产品危害的提高,变成现在不消费过去的有毒、危害产品了。那么,这些过去的大数据就没有多大意义了,如果根据过去的网址投放广告、推荐产品,变成消费者讨厌了。
6、任何吃的、穿的、玩的产品,只要时间一久,就会生厌,这是就有追求逆反的心里,如果网站还是推荐这些过去的吃、穿、玩的产品广告,那么就会引发消费者的厌恶。
7、当阿里巴巴网站的业务还是依靠快递投送时,以1919网、酒仙网、红酒网等的产品龙头网,已经剔除快递投送了,而是直接让加盟旗舰店员工投送消费者购买的产品,这能节约7%的费用。如果全国各行各业学这套,阿里巴巴等巨头的购物就会受到挑战。如果各地政府搭建管辖范围内的综合网站平台,让大型本地店铺自己员工投送本市消费者的购买产品,如此就会大大减少互联网巨头的业绩,而且会大大减少互联网巨头的流量。将来,互联网巨头有可能步大卖场现在的后尘。
8、大数据分析是过去的数据,并不代表未来,如果抓住将来的消费趋势,那么,就会抓住主要消费数据了。所以,大数据属于历史不属于未来。
综上所述,笔者认为,通过以上8点分析,大数据是有大量的壳的,当然也是有肉的。互联网上的精准营销、推荐未必就是有效的。由于网购一半以上是服装鞋子箱包产品,但是服装鞋子是快时尚产品,不仅尺码不一,而且照片与手感、质感、厚度等都是不一样的,很多照片通过修正后更加好看,而有的产品换个角度拍摄的效果非常好。由于买回与网络效果不一样,服装退货率达到70%,将来服装这种网购会不会面临淘汰?还存在未知数。另外,每年的“双11”,很多促销没必要进行,因为没有肉,但是却被逼低价销售,这是乱折腾。很明显,大数据并不是都是肉,壳也不少,相互对冲后,还剩多少肉?将来的互联网发展有可能去现在流行的综合平台网模式,那么新的模式如何创新呢?就像现在的大卖场模式已经淘汰如何创新销售模式呢?所以,笔者建议企业家们不要痴迷于大数据、互联网+,而是要形成自己独特的网络模式、O2O模式,这就需要创新专家根据企业的独特性进行度身定做网络模式、O2O模式,否则,就成不了领头羊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29