
什么是Big Data?
Big Data,一般称为“大数据”,这已经不是一个新鲜的概念,是一把可以适用于各行各业的万能钥匙。但现在,这个名词可以说已经到了“滥用”的地步,“大数据分析”似乎正在从一个高大上的名词变成了一个没什么新意的“噱头”。
2001年,当时在美国Gartner咨询公司担任市场分析师的Doug Laney用3个V阐述了现在主流的关于Big Data的定义,3个V指的是volume(量),velocity(速)和variety(样)。
Volume,顾名思义指的是数据的数量。许多因素都会导致数据量的增加。比如来自社交媒体中的各种杂乱无章的数据,越来越多的身体健康的数据通过传感器和可穿戴设备得到收集。在过去,对大量数据的存储是一个问题,随着数据存储成本的降低,这个问题得到了很好的解决,但其他的问题也随之出现,比如如何在大量的数据中找到自己需要的相关数据,以及如何对这些相关的数据进行分析,得出有价值的结论。
Velocity,即数据更新的速度。现在,各种数据正在以一种前所未有的速度流动着,并且需要即时的反应和处理。快速的处理数据的变化更新是大多数机构面临的一个挑战。
Variety,数据的多样性。现在,数据的类型可谓是多种多样。传统的数据库中有大量的结构化数据,非结构化的文本、邮件、音频、视频等现在出现得更多。怎样整合、处理各种类型的数据正是现在许多机构需要应对的问题。
而具体到互联网医疗领域,Big Data指的是利用相关技术来捕获和分析大量而复杂的数据,以便于改善患者的治疗效果,优化医疗服务流程。
事实上,虽然Big Data这个词从字面意思上看似乎只是与数据的数量有关,Doug Laney的定义中也提到了关于数据的数量、种类等问题,事实上并不仅限于此。Big Data同时也意味着一个机构要存储和处理巨量的数据信息所需要的技术和工具。
尤其是在医疗健康行业,临床、财政、管理、基因等各方面都会产生大量的数据,并且非常需要“Big Data”的技术来进行处理。
Big Data在互联网医疗领域的主要强调一下6大类信息:
1、网络和社交媒体的数据。比如来自Facebook、Twitter、Linkedln、博客、医疗健康论坛和智能手机APP的用户交互数据。
2、机器设备中的数据。比如来自传感器、测量仪器以及其他设备的数据。
3、相关事务数据。比如在各种半结构化和非结构化的表格中关于医保索赔和支付的相关数据信息。
4、生物特征辨识数据。比如指纹、遗传基因、笔迹、视网膜扫描、X光以及其他医学图像。
5、人类记录的数据。比如EMRs(关于EMR的详细介绍可戳这里)、医生的笔记、邮件、纸质文件等。
6、与药物作用机制相关的药品研发数据,在人体中的目的和副作用。
Big Data如何用于互联网医疗
Big Data在医疗领域中所扮演的角色正在被不断地放大,根据动脉网的整理,Big Data在医疗领域的基本应用过程如下:
1、搜集和聚合来自各个来源的巨量患者信息;
2、以各种目的导向出发,分析搜集到的信息,比如优化患者的诊疗、提高医疗体系的效率;
3、应用数据分析的结果,改善患者的治疗,提高医疗系统的投资回报率;
Big Data在医疗领域中的应用正在被逐渐铺开,其好处也将日益凸显,当前主要的意义在于:
1、通过对临床数据的分析,对患者进行更有前瞻性的治疗和照护,提高疾病的治疗效果;
2、通过对最新的数据库的分析提高对临床决策的支持;
3、通过对统计工具和算法的使用来改善临床试验的设计;
4、通过对大数据集的分析为个性化医疗提供支持;
5、通过优化业务决策支持,以确保医疗资源的适当分配;
Big Data当前的市场及其趋势
根据R&R的一份市场调查报告,仅在医疗健康领域,Big Data从2012到2017年的增长率能够达到23.7%,市场总量达到108亿美元。
麦肯锡也预测,如果充分利用大数据的潜力及其在医疗健康价值链中的作用,仅在美国就能够实现医疗消费开支削减达3000到4500亿美元。
Big Data在医疗健康领域应用的推动因素:
1、改善临床治疗效果的需要;
2、提高医疗数据管理效率的需要;
3、EHR使用覆盖率的快速增长;
4、对以价值为导向的医学的关注;
在大数据分析基础上的个性化医疗的需要;
1、改善医疗决策支持的需要;
2、降低药品研发成本的需要;
3、降低临床试验成本的需要;
Big Data在医疗健康领域应用的阻碍因素:
1、医疗领域中信息技术人才的缺乏;
2、医疗领域中数据透明度的缺乏;
资金约束;
1、对患者隐私问题的担忧;
2、传统的数据分析成本较低;
3、医疗系统之间缺乏互操作性;
Big Data的风暴其实早已席卷全球除医疗外的各个领域,而伴随其在医疗领域的迅速扩张,将会有越来越多的机构意识到Big Data对服务患者、医疗人员甚至是他们自己所起到的重要作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08