京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代企业所需的三大技术_数据分析师培训
作为IT领域的关键词,“大数据”不断被大书特书,对其分析利用也备受关注。另一方面,靠IT技术、现有的组织和人才技能解决不了的难题也渐渐浮出水面。这就需要“分析数据及其与业务相结合的技术”。
本文总结了将数据分析应用到业务中所需的技术,以及怎样在企业中实现有效的信息应用。同时,还列举了日本国内外的先进事例。
三大技术
下面,我们来看一下大数据时代企业所需的技术有哪些?
业务技能
这里的业务技能不是指提高业绩的能力,而是指将业务过程标准化、掌握各个过程中哪些信息需要输入、记录等能力。
以经营活动为例。通常,将一些促销活动的问卷调查中有望成为真实客户的顾客信息录入CRM(顾客管理系统)系统,销售负责人在此信息的基础上开展营销,顾客感兴趣的产品、服务等将作为数据输入CRM系统。接下来,如果顾客购买了产品,在结算系统输入结算信息,如果是货物的话在物流系统输入、生成物流信息。像这样,掌握数据是在哪一过程中、什么活动中生成的非常重要。
此外,哪一过程、或者在哪一过程生成的数据会对业务的结果产生较大影响等,与其感性估计,不如对相关数据进行分析、形成模式化。例如,与顾客的年龄、性别相比,从事哪种职业对购买概率的影响更大等。
数学技能(模式化、样本化)
其次是分析数据所需的数学技能。此前,说到分析业务数据的技能的话,都是些求合计、平均值和标准差等简单的统计学知识,但以后,通过分析数据研究出业务的规律性,形成“模式化”、“样本化”技术非常必要。这在科学界是一种常见手法。例如,理想气体状态方程“PV=nRT”,就是将气体的状态用模式化的公式表现出来。
同样,在业界,也需要将商业活动的状态形成公式化的分析技术。例如,连锁超市可以根据店铺的位置,计算出各种条件下(销售业绩、天气、气温、星期几等)的客流量和每种商品的销售额,找出规律,就可以做出更适当的调整,也能减少亏损、改善盈利。
IT技术
IT技术也不可或缺。首先,就是与数据库相关的技术。需要分析的数据保存在哪儿、AGE和JOB等数据库中涉及到的项目怎样与实际业务术语相结合等,现在都可以通过IT手段来实现。但是,目前大多数企业面临着业务之间的业务术语不统一、数据库零散不成规模等问题,仍然还有很多要依靠人来解决的东西。
今后,通过IT技术解答公式的能力将越来越重要。例如,假设商品的销售额与顾客年龄的关系,用公式“销售额=a×年龄”来表述,系数a就可以通过IT技术求出。这是非常简单的线性回归问题,数据量小的话就可以用Excel等电子表格软件求出a。此外,也可以用SPSS和R等专业统计分析软件。更复杂的情况,就需要创建一个程序来求系数,拥有此项技术的IT工程师就可以说是珍宝了!
保证人才很重要
介绍了以上三种技术,但遗憾的是,日本企业里并不存在拥有以上全部技术的超人。那么,如何培养拥有这些技术的人才呢?
无论哪一种技术都是很专业的,都不是一朝一夕就能掌握的。但其实,掌握着业务技术的人就在各个业务部门,掌握IT技术的人才就在信息系统部门。
看上去很难的数学知识,对理科系的研究生来说往往并不算什么。物理、化学等领域中,也不乏将自然科学公式化、并研究怎样才能得出精确度更高的公式的人,而这其中有很多有经验的人才,将自然科学应用到业务活动中并非不可能。
将这些人才从各个部门集中到一起,组成进行数据分析的专业小组,不是现在立刻就可以开始做的事情吗?然后,将小组置于经营企划和业务企划等制定企业发展战略的部门,成为支持企业竞争优势的关键力量。
从小事做起
掌握数学知识可能比较难,但应用软件解答课题并不是解答数学难题。大家手边所有的电子表格软件,就能进行简单的回归分析,也有很多更高级的分析软件,可以帮你解决更复杂的问题,这些弥补了数学知识的不足。
实际上,已经有在分析技术上进行投资并获得成功的企业。丹麦Vestas Wind Systems,是从事风力发电机设计、制造、销售的公司,它将大数据分析运用于业务中,通过持续地、公司全体有组织的工作收获了成功。在组织化的基础上增加持续性,可以更有效地运用分析。
在日本,也有几位IT工程师将大数据分析做成项目并不断取得成果。在这个过程中,与分析相关的数学知识的不足部分有像IBM一样的数学解析团队和大数据分析软件供应商的支持,弥补了之前所说的三大技术的不足,成功取得了成果。
同时,也有企业成立了100人以上的专业分析团队。集齐IT和业务双方的人才成立分析团队,通过实际操作重复着“试验--错误”的过程。经过这一过程,企业不断得到小小的成功体验,分析水平也逐渐提高。而企业应该最先着手的就是培养拥有必要知识技术的人才。
目前,这种涌现大量且多样信息的业务环境中,无论哪个企业都有分析需求。而熟练应用最新的IT工具、具备更好的洞察力将成为拉开企业之间差距的关键。
本文总结了要把数据分析应用到业务中所必需的知识和组织,以大数据的盛行为契机,重新审视数据分析的企业并不少。即使不能全公司大规模的进行,也应该尽快从可以做的地方着手,从小事做起是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22