大数据时代企业所需的三大技术_数据分析师培训
作为IT领域的关键词,“大数据”不断被大书特书,对其分析利用也备受关注。另一方面,靠IT技术、现有的组织和人才技能解决不了的难题也渐渐浮出水面。这就需要“分析数据及其与业务相结合的技术”。
本文总结了将数据分析应用到业务中所需的技术,以及怎样在企业中实现有效的信息应用。同时,还列举了日本国内外的先进事例。
三大技术
下面,我们来看一下大数据时代企业所需的技术有哪些?
业务技能
这里的业务技能不是指提高业绩的能力,而是指将业务过程标准化、掌握各个过程中哪些信息需要输入、记录等能力。
以经营活动为例。通常,将一些促销活动的问卷调查中有望成为真实客户的顾客信息录入CRM(顾客管理系统)系统,销售负责人在此信息的基础上开展营销,顾客感兴趣的产品、服务等将作为数据输入CRM系统。接下来,如果顾客购买了产品,在结算系统输入结算信息,如果是货物的话在物流系统输入、生成物流信息。像这样,掌握数据是在哪一过程中、什么活动中生成的非常重要。
此外,哪一过程、或者在哪一过程生成的数据会对业务的结果产生较大影响等,与其感性估计,不如对相关数据进行分析、形成模式化。例如,与顾客的年龄、性别相比,从事哪种职业对购买概率的影响更大等。
数学技能(模式化、样本化)
其次是分析数据所需的数学技能。此前,说到分析业务数据的技能的话,都是些求合计、平均值和标准差等简单的统计学知识,但以后,通过分析数据研究出业务的规律性,形成“模式化”、“样本化”技术非常必要。这在科学界是一种常见手法。例如,理想气体状态方程“PV=nRT”,就是将气体的状态用模式化的公式表现出来。
同样,在业界,也需要将商业活动的状态形成公式化的分析技术。例如,连锁超市可以根据店铺的位置,计算出各种条件下(销售业绩、天气、气温、星期几等)的客流量和每种商品的销售额,找出规律,就可以做出更适当的调整,也能减少亏损、改善盈利。
IT技术
IT技术也不可或缺。首先,就是与数据库相关的技术。需要分析的数据保存在哪儿、AGE和JOB等数据库中涉及到的项目怎样与实际业务术语相结合等,现在都可以通过IT手段来实现。但是,目前大多数企业面临着业务之间的业务术语不统一、数据库零散不成规模等问题,仍然还有很多要依靠人来解决的东西。
今后,通过IT技术解答公式的能力将越来越重要。例如,假设商品的销售额与顾客年龄的关系,用公式“销售额=a×年龄”来表述,系数a就可以通过IT技术求出。这是非常简单的线性回归问题,数据量小的话就可以用Excel等电子表格软件求出a。此外,也可以用SPSS和R等专业统计分析软件。更复杂的情况,就需要创建一个程序来求系数,拥有此项技术的IT工程师就可以说是珍宝了!
保证人才很重要
介绍了以上三种技术,但遗憾的是,日本企业里并不存在拥有以上全部技术的超人。那么,如何培养拥有这些技术的人才呢?
无论哪一种技术都是很专业的,都不是一朝一夕就能掌握的。但其实,掌握着业务技术的人就在各个业务部门,掌握IT技术的人才就在信息系统部门。
看上去很难的数学知识,对理科系的研究生来说往往并不算什么。物理、化学等领域中,也不乏将自然科学公式化、并研究怎样才能得出精确度更高的公式的人,而这其中有很多有经验的人才,将自然科学应用到业务活动中并非不可能。
将这些人才从各个部门集中到一起,组成进行数据分析的专业小组,不是现在立刻就可以开始做的事情吗?然后,将小组置于经营企划和业务企划等制定企业发展战略的部门,成为支持企业竞争优势的关键力量。
从小事做起
掌握数学知识可能比较难,但应用软件解答课题并不是解答数学难题。大家手边所有的电子表格软件,就能进行简单的回归分析,也有很多更高级的分析软件,可以帮你解决更复杂的问题,这些弥补了数学知识的不足。
实际上,已经有在分析技术上进行投资并获得成功的企业。丹麦Vestas Wind Systems,是从事风力发电机设计、制造、销售的公司,它将大数据分析运用于业务中,通过持续地、公司全体有组织的工作收获了成功。在组织化的基础上增加持续性,可以更有效地运用分析。
在日本,也有几位IT工程师将大数据分析做成项目并不断取得成果。在这个过程中,与分析相关的数学知识的不足部分有像IBM一样的数学解析团队和大数据分析软件供应商的支持,弥补了之前所说的三大技术的不足,成功取得了成果。
同时,也有企业成立了100人以上的专业分析团队。集齐IT和业务双方的人才成立分析团队,通过实际操作重复着“试验--错误”的过程。经过这一过程,企业不断得到小小的成功体验,分析水平也逐渐提高。而企业应该最先着手的就是培养拥有必要知识技术的人才。
目前,这种涌现大量且多样信息的业务环境中,无论哪个企业都有分析需求。而熟练应用最新的IT工具、具备更好的洞察力将成为拉开企业之间差距的关键。
本文总结了要把数据分析应用到业务中所必需的知识和组织,以大数据的盛行为契机,重新审视数据分析的企业并不少。即使不能全公司大规模的进行,也应该尽快从可以做的地方着手,从小事做起是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08