
大数据时代企业所需的三大技术_数据分析师培训
作为IT领域的关键词,“大数据”不断被大书特书,对其分析利用也备受关注。另一方面,靠IT技术、现有的组织和人才技能解决不了的难题也渐渐浮出水面。这就需要“分析数据及其与业务相结合的技术”。
本文总结了将数据分析应用到业务中所需的技术,以及怎样在企业中实现有效的信息应用。同时,还列举了日本国内外的先进事例。
三大技术
下面,我们来看一下大数据时代企业所需的技术有哪些?
业务技能
这里的业务技能不是指提高业绩的能力,而是指将业务过程标准化、掌握各个过程中哪些信息需要输入、记录等能力。
以经营活动为例。通常,将一些促销活动的问卷调查中有望成为真实客户的顾客信息录入CRM(顾客管理系统)系统,销售负责人在此信息的基础上开展营销,顾客感兴趣的产品、服务等将作为数据输入CRM系统。接下来,如果顾客购买了产品,在结算系统输入结算信息,如果是货物的话在物流系统输入、生成物流信息。像这样,掌握数据是在哪一过程中、什么活动中生成的非常重要。
此外,哪一过程、或者在哪一过程生成的数据会对业务的结果产生较大影响等,与其感性估计,不如对相关数据进行分析、形成模式化。例如,与顾客的年龄、性别相比,从事哪种职业对购买概率的影响更大等。
数学技能(模式化、样本化)
其次是分析数据所需的数学技能。此前,说到分析业务数据的技能的话,都是些求合计、平均值和标准差等简单的统计学知识,但以后,通过分析数据研究出业务的规律性,形成“模式化”、“样本化”技术非常必要。这在科学界是一种常见手法。例如,理想气体状态方程“PV=nRT”,就是将气体的状态用模式化的公式表现出来。
同样,在业界,也需要将商业活动的状态形成公式化的分析技术。例如,连锁超市可以根据店铺的位置,计算出各种条件下(销售业绩、天气、气温、星期几等)的客流量和每种商品的销售额,找出规律,就可以做出更适当的调整,也能减少亏损、改善盈利。
IT技术
IT技术也不可或缺。首先,就是与数据库相关的技术。需要分析的数据保存在哪儿、AGE和JOB等数据库中涉及到的项目怎样与实际业务术语相结合等,现在都可以通过IT手段来实现。但是,目前大多数企业面临着业务之间的业务术语不统一、数据库零散不成规模等问题,仍然还有很多要依靠人来解决的东西。
今后,通过IT技术解答公式的能力将越来越重要。例如,假设商品的销售额与顾客年龄的关系,用公式“销售额=a×年龄”来表述,系数a就可以通过IT技术求出。这是非常简单的线性回归问题,数据量小的话就可以用Excel等电子表格软件求出a。此外,也可以用SPSS和R等专业统计分析软件。更复杂的情况,就需要创建一个程序来求系数,拥有此项技术的IT工程师就可以说是珍宝了!
保证人才很重要
介绍了以上三种技术,但遗憾的是,日本企业里并不存在拥有以上全部技术的超人。那么,如何培养拥有这些技术的人才呢?
无论哪一种技术都是很专业的,都不是一朝一夕就能掌握的。但其实,掌握着业务技术的人就在各个业务部门,掌握IT技术的人才就在信息系统部门。
看上去很难的数学知识,对理科系的研究生来说往往并不算什么。物理、化学等领域中,也不乏将自然科学公式化、并研究怎样才能得出精确度更高的公式的人,而这其中有很多有经验的人才,将自然科学应用到业务活动中并非不可能。
将这些人才从各个部门集中到一起,组成进行数据分析的专业小组,不是现在立刻就可以开始做的事情吗?然后,将小组置于经营企划和业务企划等制定企业发展战略的部门,成为支持企业竞争优势的关键力量。
从小事做起
掌握数学知识可能比较难,但应用软件解答课题并不是解答数学难题。大家手边所有的电子表格软件,就能进行简单的回归分析,也有很多更高级的分析软件,可以帮你解决更复杂的问题,这些弥补了数学知识的不足。
实际上,已经有在分析技术上进行投资并获得成功的企业。丹麦Vestas Wind Systems,是从事风力发电机设计、制造、销售的公司,它将大数据分析运用于业务中,通过持续地、公司全体有组织的工作收获了成功。在组织化的基础上增加持续性,可以更有效地运用分析。
在日本,也有几位IT工程师将大数据分析做成项目并不断取得成果。在这个过程中,与分析相关的数学知识的不足部分有像IBM一样的数学解析团队和大数据分析软件供应商的支持,弥补了之前所说的三大技术的不足,成功取得了成果。
同时,也有企业成立了100人以上的专业分析团队。集齐IT和业务双方的人才成立分析团队,通过实际操作重复着“试验--错误”的过程。经过这一过程,企业不断得到小小的成功体验,分析水平也逐渐提高。而企业应该最先着手的就是培养拥有必要知识技术的人才。
目前,这种涌现大量且多样信息的业务环境中,无论哪个企业都有分析需求。而熟练应用最新的IT工具、具备更好的洞察力将成为拉开企业之间差距的关键。
本文总结了要把数据分析应用到业务中所必需的知识和组织,以大数据的盛行为契机,重新审视数据分析的企业并不少。即使不能全公司大规模的进行,也应该尽快从可以做的地方着手,从小事做起是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18