
大数据带来商业模式的成熟发展革命
大数据带给人们巨大的理念上的改变,同样它也会带来商业模式的成熟发展甚至革命。电子科技大学,互联网科学中心主任 《大数据时代》中文译者周涛博士针对大数据在商业上应用的1.0、2.0和3.0版本,做了细致的分析。
大数据1.0
大数据1.0很好理解,一个企业自身的业务需求产生大量数据,利用这些数据,通过深入分析,可以优化相关的业务。在这个时候,数据起到了指导决策的作用,举几个例子,比如说沃尔玛,它有大量的会员卡和零售数据,所以通过这些数据可以制定更好的优惠卷和个性化商品推荐服务。
也通过这些数据它能够更好地管理产业链、仓储和物流。我们在北京做过一家,是专门做电子商务服务的,拥有2亿多用户的数据和8千万单品的数据,就是怎么样做商品的个性化推荐。利用这些个性化推荐,不仅可以直接做自动化展示,还能够帮助电商更好地编排在网上店铺的摆放等等。
豆瓣是全球做社会化推荐最好的一家企业,利用评论数据,也利用点击浏览数据能够做到听其言观其行,利用这些数据可以做到几乎最好已知的社会化推荐,这样的例子还有很多。
还有一家企业,可以把电子化定义拿来做智能的诊断,亚马逊是做个性化推荐的鼻祖,它可以知道几乎你手机上安装的所有应用,事实上它能知道你的消费水平,有没有小孩,有没有车,有没有得什么慢性病,有没有金融支付终端等等,它还知道你在哪个地方,如果是这样一些企业打这样的个性化广告效果会很好。
大数据的2.0
大数据的2.0和1.0的理念有所不同,这里强调数据的外延。数据除了从自身的业务产生并解决自身问题以外,我们最终是数据本身有能力解决其他的问题,同样我们也需要有能力去把其他很多其他的数据放在一起解决自身的问题,这就是所谓的数据外部性问题。这里要求企业搜集与目标业务直接或间接关联的大量异质数据。
建立复杂的分析和预测模型,产生针对目标业务的输出。这时候数据本身就是决策。为什么这样说?虽然在这种复杂的模型中,我们已经很难看到真正的因果关系,我们并不知道是为什么由A到B,由B到C,但是我们只知道选择A比选择B好,所以数据本身不仅仅是指导决策,而就是决策。
举几个例子,比如说Zestfinance是一家很奇怪的信贷公司,可以快速发放小额贷款,所利用的不是平常讲的背景调查等等,而是它分析社交网络以及在其他购物等等频道留下来的你的活动记录,所以他说所有的数据实际对我们来说都是新闻数据,用这种办法来预测还贷能力,计算信用度,最典型的是把其他和你本行业看起来没有直接关联的数据用起来做本行业的事情。
大数据3.0
希望大数据3.0能进入真正的大数据时代。在这里我们对数据的质量价值,数据好不好,有多大价值,如果交换要如何付费。如果别人拷走了你的数据怎么算?还有数据的权益。还有我们特别关心的数据隐私安全等等,我们要有充分的认识。要又可以量化或者可以保障的措施。
在这个时候,类似于电信运营商有一种叫做数据运营商会出现,会有很多数据,在上面会有小的科研团队或者创新型企业,也有数据提供商和数据加工商,他们会产生不管是下载还是API接口还是其他的产品,会成为一种单独的产品在上面出售,有自己的分成模式。这个时候会出现一种新的数据客,他们在数据市场中玩粗加工的数据或者是粗加工的数据产品,再产生新的数据产品,以ATI的形式投放到数据市场。
就像手机市场中,经常有两三个人很聪明的人开发一个很有趣的应用,就有很多的使用。那时候可能有一个很聪明的人,开发和有趣的数据产品,可能很多企业政府科研团队都会使用他们的数据产品。
当然,最重要的是,所有的学术团体、企业和政府,都能够使用到大数据,这就是为什么讲今天叫大数据时代,因为如果只有两三个人,或者七八家企业能够用到大数据这不能叫一个时代,就像十个人上网不能叫互联网时代。
所以将来当我们有了大数据之后,我们希望的是未来某一天通过更好的索引,更好的体系结构的支撑,使得普通的科研团队、普通的创业者都能够有办法获取你所想获取的数据里面的一些逻辑片断,我们未来操纵大数据应该是四两拨千斤举重若轻,尽管我看到的是一个很大的数据,但是操作起来就像单机版里面的一个小文件一样,这是我们未来的希望。
总结
大数据从1.0到2.0到3.0,我们提过一个概念,商业模式从2B到2C到2D、2Data,实际上是有两条线在驱动它,一条线我们希望它越来越粗犷、开放,数据一定要开放出来,以共享的心态。一条线我们希望它越来越精深,就是深入地分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18