
政府应当大数据时代“排头兵”
当前,随着网络技术、云计算包括信息的搜索引擎和各种存储等一系列信息化的高速发展,大数据对于我们的生活、管理包括各方面企业的运行、社会组织的各种活动,都会带来重大影响。运营商作为数据生产者的优势是其他企业无法比拟的。据了解,全球120家运营商中,已经有48%的企业正在实施大数据战略,试图打造全新的商业生态圈。因此,应当高度关注这样一个变化,密切关注大数据时代对我们工作的影响。笔者认为,大数据时代政府目前至少要做好五件事情。
首先是根据目前大数据的定义,来深刻理解大数据概念。
这是因为,现在由于互联网的高速发展,人类掌握的各种数据是海量的、不断扩大的。存储的技术也在不断提高。过去我们讲一个G,后来讲TB,现在可以讲是上万个TB在形成各种数据。现在智能手机很多,可以讲现在一个智能手机的功能是十年前的电脑的功能,甚至还要强大很多。全球现在有多少亿人在拿着手机,不断跟互联网形成数据的交换,还有很多像网络的监控系统、物联网的系统等等,每天每时都在产生大量的海量的数据,这些数据的汇集、存储和云计算,包括数据的挖潜、技术的提高,会形成很多十分有价值的东西。按照西方的理解,它是比石油、黄金还要珍贵的资源,必然会影响我们生活、工作、学习的方方面面。可以说在这样一个大数据时代,过去我们差不多靠个人的经历做判断、决策,都已过时了,所有的决策、判断必须要根据大数据,根据数据的形成做出自己的判断和决定,这样才是一种符合科学的生活和学习的方式。
其次是尽可能挖掘数据价值。
先说说作为政府层面的事情,第一是应该高度重视数据的采集和生成。因为我们生活在这个时代,现在我们的信息技术的广泛应用已经有很多的数据在海量地生存着,而我们使它真正成为有用的,对事物发展的轨迹、脉络包括今后的趋势,用以做判断的数据源,首先要做好数据的采集工作。
第二是要强调做好数据的公开工作。过去我们政府的信息化有很大的毛病,形成部门所有的很多的信息孤岛。现在大数据时代,要求数据的开放。而且数据的开放不仅仅是过去讲的信息公开,信息公开可能是一个一个点的信息公开,而数据的开放是数据库的开放,是个片、面的开放。所以,它跟过去政府讲的信息公开不是一个层次的问题,需要我们把数据的公开推进,只有公开才能交流。
第三是缺少不了数据的整合。如果我们的部门在方方面面的数据都是公开的,就可以把它整合起来,大量海量的数据通过现代的信息技术,包括我们大规模的计算机的处理、云计算的处理,可以形成很多特别有价值的东西,对于政府的决策,它的科学性有至关重要的作用。所以,这方面通过整合,绝对不是1+1等于2,而是1+1等于10,等于100,数据的整合过程中会产生新的、改变我们生活的判断和决断。
第四是要建立我们的数据文化。中国人对数据的精确计算,从历史上来讲确实还是有一定的缺乏。我们经常喜欢用约数、大概、估计、差不多来做一些判断,我们也经常喜欢用经验式的方法进行判断。而在大数据时代,要求我们推广和在人民群众中间树立数据文化,一切用数据说话,而不是用大概、差不多或者是现成的结论去做出判断。所以,数据文化对于我们中华民族来讲是十分重要的,也是需要补上的一课。
第五是数据安全方面。因为大数据也好,信息化也好,没有数据的安全措施,没有个人隐私,包括企业法人隐私的合理保护,也包括国家安全机密的合理保护,它也是很难在我们全社会去推广和发展。往往因为安全的问题不能解决,它制约着我们的信息化、大数据的发展。所以,信息安全也是政府要关注、要解决好的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13