
电商涉足P2P背后:大数据是最可靠的风控依据
随着P2P网贷的不断发展,网贷模式也在不断地更新。从最初的拍拍贷的纯线上模式,到红岭的大单模式,再到以有利网为代表的通道模式,P2P网贷在国内所延伸出来的模式创新层出不穷。时间进入2014年下半年,随着股市大涨,股票配资的业务模式应运而生,而羊年开年后,行业又爆出知名电商多赢涉足P2P网贷,电商不卖商品,卖钱来了。电商做P2P,有哪些优势呢?贸贸然而进入,又哪来的自信呢?
P2P面临的最大问题是什么?
目前在P2P网贷行业内比较主流的观点:未来行业一定是“大而全与小而美并存”。在我个人看来,网贷领域是很难做到大而全的。很多人也拿陆金所这样的巨头在行业中的地位,来判定行业的格局已经初步形成。但是最近我们也看到了,陆金所准备单独拆分P2P业务,由此可见,P2P业务在陆金所的整个业务体系中所占的比例也不算太多。除去陆金所,以P2P为核心业务的红岭创投,不断被坏账缠身。另外,几家号称排名前列的网贷平台,相信其所面临的风控压力一定也不小。
在我个人看来,很多平台的业务其实已经做到了天花板。再继续扩大平台的业务量,其风险就会超出平台的可控范围。什么这样说呢?最核心的问题就是平台无法解决风控问题。风控之所以难以解决,最核心的因素还是由网贷本身涉及的借贷市场特性决定的。网贷业务涉及的基本就是次级贷市场,本身业务质量并不高,好的项目数量更是屈指可数。这种情况下,要大量提升业务量,风控质量必定下降,坏账隐患出现。因此,在平台做到一定规模的情况下,风控基本就会成为平台发展的最大瓶颈。而金融的地域性,在一定程度上决定了异地风险的不可控性。在这样的情况下,网贷领域巨头很难出现,未来网贷行业一定是呈区域细分、行业细分的百花齐放状。
电商企业涉足金融,行业机会何在?
目前,银行端基本不愿意把钱借给电商企业,因为对于银行来说,他们更偏好实体经济,实体抵押。电商的交易数据、物流数据等传统银行也不愿意承认。 但是,银行不愿意做的业务,其业务质量就一定不高吗?非也!更多的还是因为传统的金融机构在电商领域缺乏相关的经验。但是,实体经济转型的速度越来越快,对互联网的依赖越来越重,越来越多交易从线下搬到了线上。
大量的电商企业在需要大量备货,其背后的金融需求该又谁来满足? 国内最大的几家电商平台,早在几年前就开始面向电商企业提供金融服务了。阿里、慧聪是国内最早涉足这块业务的企业。但是,不管是阿里还是慧聪,其所提供的金融服务毕竟有限,远远无法满足电商领域的真正的融资需求。
大量的市场需求,又该由谁来满足呢?显然,p2p网贷是一个渠道。华南的电商企业多赢6000万收购某家P2P网贷平台,变身多赢金融拉开了电商进军网贷市场的第一幕。
电商涉足P2P网贷能够解决什么样的问题?
首先,我们都说P2P网贷能够颠覆传统金融,因为他更高效,更便捷。但是,P2P网贷真像我们想象中的那样吗?
对于多数网贷平台来说,其风控严重依赖于线下。很多公司虽然号称互联网金融企业,却到处开线下店,业务员占到了公司员工数的70%以上。这样的模式,并不如我们当初所设想的那样高效与便捷。模式变得越来越重是目前很多平台所面临的最尬尴的问题。 风控难题,制约着很多网贷平台的发展。
那么电商又有什么样的解决方式呢?很简单,电商的交易数据、物流数据、包括平台电商给出的授信额度都能够作为风控的参考依据。大数据风控目前最可靠的数据一定是来自电商领域。这样就能够在目前的环境下真正的做到P2P网贷的高效与便捷。风控与业务线上化,这样的模式也许就P2P网贷的最优模式。
非平台类型的电商涉足P2P网贷所面临的问题
前面提到了,阿里、慧聪这样的平台方其实很早之前就涉及了电商金融服务。最核心的因素就是他们有最核心的数据,基于大数据的风控就能够对电商企业进行授信。但是,类似于多赢这样的非平台方的电商企业,涉足网贷领域最大的难点,是如何与阿里、慧聪这样的平台方合作,取得其授信资料,解决风控问题,才是多赢金融未来要走的路。
阿里的征信服务,未来或将成为电商解决风控的重要参考依据。目前阿里推出了针对个人信用评估的芝麻信用,未来针对企业用户的信用评估,是否会向围绕“电商企业提供金融服务”的平台开放呢?如果开放,这样一个巨大的市场,注定成为P2P网贷行业的最优模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29