
电商涉足P2P背后:大数据是最可靠的风控依据
随着P2P网贷的不断发展,网贷模式也在不断地更新。从最初的拍拍贷的纯线上模式,到红岭的大单模式,再到以有利网为代表的通道模式,P2P网贷在国内所延伸出来的模式创新层出不穷。时间进入2014年下半年,随着股市大涨,股票配资的业务模式应运而生,而羊年开年后,行业又爆出知名电商多赢涉足P2P网贷,电商不卖商品,卖钱来了。电商做P2P,有哪些优势呢?贸贸然而进入,又哪来的自信呢?
P2P面临的最大问题是什么?
目前在P2P网贷行业内比较主流的观点:未来行业一定是“大而全与小而美并存”。在我个人看来,网贷领域是很难做到大而全的。很多人也拿陆金所这样的巨头在行业中的地位,来判定行业的格局已经初步形成。但是最近我们也看到了,陆金所准备单独拆分P2P业务,由此可见,P2P业务在陆金所的整个业务体系中所占的比例也不算太多。除去陆金所,以P2P为核心业务的红岭创投,不断被坏账缠身。另外,几家号称排名前列的网贷平台,相信其所面临的风控压力一定也不小。
在我个人看来,很多平台的业务其实已经做到了天花板。再继续扩大平台的业务量,其风险就会超出平台的可控范围。什么这样说呢?最核心的问题就是平台无法解决风控问题。风控之所以难以解决,最核心的因素还是由网贷本身涉及的借贷市场特性决定的。网贷业务涉及的基本就是次级贷市场,本身业务质量并不高,好的项目数量更是屈指可数。这种情况下,要大量提升业务量,风控质量必定下降,坏账隐患出现。因此,在平台做到一定规模的情况下,风控基本就会成为平台发展的最大瓶颈。而金融的地域性,在一定程度上决定了异地风险的不可控性。在这样的情况下,网贷领域巨头很难出现,未来网贷行业一定是呈区域细分、行业细分的百花齐放状。
电商企业涉足金融,行业机会何在?
目前,银行端基本不愿意把钱借给电商企业,因为对于银行来说,他们更偏好实体经济,实体抵押。电商的交易数据、物流数据等传统银行也不愿意承认。 但是,银行不愿意做的业务,其业务质量就一定不高吗?非也!更多的还是因为传统的金融机构在电商领域缺乏相关的经验。但是,实体经济转型的速度越来越快,对互联网的依赖越来越重,越来越多交易从线下搬到了线上。
大量的电商企业在需要大量备货,其背后的金融需求该又谁来满足? 国内最大的几家电商平台,早在几年前就开始面向电商企业提供金融服务了。阿里、慧聪是国内最早涉足这块业务的企业。但是,不管是阿里还是慧聪,其所提供的金融服务毕竟有限,远远无法满足电商领域的真正的融资需求。
大量的市场需求,又该由谁来满足呢?显然,p2p网贷是一个渠道。华南的电商企业多赢6000万收购某家P2P网贷平台,变身多赢金融拉开了电商进军网贷市场的第一幕。
电商涉足P2P网贷能够解决什么样的问题?
首先,我们都说P2P网贷能够颠覆传统金融,因为他更高效,更便捷。但是,P2P网贷真像我们想象中的那样吗?
对于多数网贷平台来说,其风控严重依赖于线下。很多公司虽然号称互联网金融企业,却到处开线下店,业务员占到了公司员工数的70%以上。这样的模式,并不如我们当初所设想的那样高效与便捷。模式变得越来越重是目前很多平台所面临的最尬尴的问题。 风控难题,制约着很多网贷平台的发展。
那么电商又有什么样的解决方式呢?很简单,电商的交易数据、物流数据、包括平台电商给出的授信额度都能够作为风控的参考依据。大数据风控目前最可靠的数据一定是来自电商领域。这样就能够在目前的环境下真正的做到P2P网贷的高效与便捷。风控与业务线上化,这样的模式也许就P2P网贷的最优模式。
非平台类型的电商涉足P2P网贷所面临的问题
前面提到了,阿里、慧聪这样的平台方其实很早之前就涉及了电商金融服务。最核心的因素就是他们有最核心的数据,基于大数据的风控就能够对电商企业进行授信。但是,类似于多赢这样的非平台方的电商企业,涉足网贷领域最大的难点,是如何与阿里、慧聪这样的平台方合作,取得其授信资料,解决风控问题,才是多赢金融未来要走的路。
阿里的征信服务,未来或将成为电商解决风控的重要参考依据。目前阿里推出了针对个人信用评估的芝麻信用,未来针对企业用户的信用评估,是否会向围绕“电商企业提供金融服务”的平台开放呢?如果开放,这样一个巨大的市场,注定成为P2P网贷行业的最优模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15