
大数据时代 盛付通如何精准营销和精细化运营
目前部分互联网金融类移动应用获取用户的成本高达8元,留住一个用户的成本接近80元,而得到一个优质付费用户的费用则高达600元。
当前,互联网金融深刻改变着传统金融经营模式和经营格局,以P2P、众筹、理财工具、手机银行等为先锋部队的电子银行渠道可以不间断地为客户提供更加便利的全方位服务,全新的互联网渠道对传统渠道的替代已越来越明显。
目前市面上涌出的众多新兴互联网金融理财类App,一定程度抢占了本属于银行的市场关注度。数据表明:银行类App在金融领域的用户覆盖率是名列前茅的,远高于其他新兴的互联网金融类App。其中,占比最高的银行App的覆盖率可高达10%左右。但是用户对银行App核心功能的认知,更多的停留在转账、汇款、信用卡等工具类服务上。而银行所推出的贷款,基金等产品服务却没有引起广大用户的足够重视。
另一方面,在新兴互联网金融领域的千余款App中(除去银行、证券),投资类App的数量最多,达到51%;其次是工具类,为26%;接下来分别是彩票类18%,以及贷款类4%。这其中,彩票App的用户忠诚度最高,有86%的人只装一款彩票App,而贷款和投资类App的这一比例仅为65%和50%。有40%的用户手机中装有多个银行类App。
移动互联网精准营销的时代已经来临
在移动应用领域,传统的推广方式包括:在应用市场上做优先排名,在搜索引擎上购买竞价排名,在一些流量入口上购买广告链接,甚至在地铁公交电视上购买平面及视频广告。
但是这些广告投入的回报效果如何呢?根据调查,目前部分互联网金融类移动应用获取用户的成本高达8元,留住一个用户的成本接近80元,而得到一个优质付费用户的费用则高达600元,由此可以看出对于互联网金融来说,获取一个用户,留住一个用户的难度与重要性。
如何高效低成本的获取用户,是移动应用普遍面临的一个重要课题。盛付通可以通过对14万款移动应用,8亿用户的数据积累,建立DSP(需求方平台),了解用户特点,针对其个性化的特性和需求,进行更为精准的广告投放,从而将获取用户的成本大幅降低。
精细化运营决定企业移动互联网业务模式成败
而如何在应用首页只能展示极少信息的情况下,向初次使用产品的用户精准的推送所需的信息呢?盛付通便可以利用已有的海量数据信息,帮助App运营者向终端用户精准的推送其所需的信息,成功快速的度过“冷启动期”。
每个智能手机上平均装有50款应用,但每周的平均打开应用数量仅为10个左右,这其中还包括如微信这样的刚性需求。这就意味着,其他的App自从第一次使用过之后就再也没有被打开过。也就是说App运营者花了极高成本获取的用户,仅有一次的打开,便流失掉了。
而在提高用户粘性和打开率上,最普遍的做法就是向用户发送消息通知,通过推送用户所感兴趣的信息将其唤醒。
但是,经过常年的观察,大部分APP运营者都没能很好的利用推送,以实现与用户间精准高效的信息互通。运营者需要深入了解用户,并对用户进行个性化的信息推送,以令其获得良好的用户体验。
此外,互联网金融App通过互联网解决了用户数量问题,还需要通过使用相关服务进行大数据分析,获得用户的信用指标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07