
要大数据不要“带病”的大数据
近年来,“大数据”逐渐受到社会各界的高度关注,在社会管理、企业营销等方面都发挥出很大作用。但到底什么是“大数据”,很多人对此还有疑惑。同时,“大数据”被迅速广泛引用也引发人们对滥用的担忧。近日,中国青年报社会调查中心的一项调查显示,43.6%的受访者认为“大数据”分析意义很大,但80.0%的受访者也确认自己不清楚什么是“大数据”,75.9%的受访者发现目前存在“大数据”被滥用的现象。(4月9日《中国青年报》)
什么是大数据?不少人或能模棱两可地说出一二,但要准确说出所以然来,恐怕不多。此次媒体的调查结果,就能够大致说明。不过这并不妨碍它成为近年来网上网下最热的热词之一。无论是互联网企业,还是管理部门,抑或媒体,冠以大数据之名的活动与宣传广告,几乎无处不在。然而,在看似“高大上”的大数据包裹之下,其所可能蕴藏的问题甚至是风险,已经开始不得不正视。
简单说,大数据只是互联网时代基于海量信息搜集之上的一种数据分析方式,说白了就是一种工具,是一种方法论。对于中国人而言,最早接触的“大数据”概念或许是历史学者黄仁宇所提出的“数目字管理”理念,大数据可以说是其加强版。那么,大数据必然能够让我们的生活变得更好吗?第一个提出“大数据时代”概念的麦肯锡公司就曾坦言,“事实上,截至目前,并没有有效的证据表明数据的强度与特定部门生产力之间存在一定积极的联系。”于此应该明白,对于作为新生事物的大数据,实在不必过于迷恋,更不能将之视为“无所不能”的神器。
事实上,大数据概念的走红与传播,本身就不乏浮躁之气。一方面,互联网加速进入web2.0时代,各行各业都被裹挟其中,包括互联网企业在内的诸多领域都渴望迅速抢滩发展先机,而大数据被视为“互联网化”的标志,成为各方争宠的“香饽饽”就成为一种必然;另一方面,大多数行业对于对于互联网的利用还处于起步阶段,竞争的同质化,手段的单一化,都导致对于大数据的过度依赖与迷恋。此种“乱战”背景下,大数据在现实中的被异化或“虚假繁荣”的风险,就大大提升,甚至是噱头大于实质,标榜大于实践。
如果说大数据被概念化虚夸或只是一种阶段性现象,那么,其被滥用所带来的实质伤害,从一开始就更应该被加以重视与防范。对此,《大数据时代》作者维克托?迈尔?舍恩伯格就曾就在演讲中提醒,“大数据一方面有很多好处,可以改善学习,但也可能被滥用在不恰当的地方上,值得警惕。”譬如最显而易见的是,不是所有的社会领域都适合作数据式的定量分析,那么将之全盘数据化,既难以实现预期的研究目的,还将误导社会与公众,产生不良的社会影响。
较之于滥用带来的“失真”,大数据运用所可能增加的信息安全风险,更与每个人息息相关。随着互联网的普及,个人隐私的威胁其实早就成为公认的担忧。现实中已不乏具体的案例。比如2013年,国内安全漏洞监测平台乌云发布报告,称如家、汉庭等大批酒店的开房记录被第三方存储,并且因为漏洞而泄露。再比如,央视315晚会曾曝光国内多家快递企业贩卖客户信息等等,都说明一旦操之适当,利用数据与侵犯个人信息安全与隐私,就在“方寸之间”。而大数据兴起,各领域的信息需求都前所未有地增加,如果不能将信息搜集纳入合法框架之内,受到法律约束,那么大数据时代也可能成为公民个人信息安全保护“最坏的时代”。
大数据作为互联网时代的一项信息处理方式,本身不具备任何原罪,如何平衡利弊,在根本上仍取决于每一个参与者自身。譬如,个人提高信息保护意识,相关部门加快信息安全保护的立法,都是必要之举。总之,我们既不能沦为大数据的奴役,片面夸大其效用,陷入数字崇拜,更不能以牺牲信息安全的代价去为实现憧憬中的“大数据时代”铺路。否则,我们所追求的就只是“带病”的大数据,与利用大数据的初衷背道而驰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23