京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度大数据预测为何测不准_数据分析师培训
未来某一天,在你驱车前往公司的路上,导航系统通过预测交通流量,会自动帮你选择一条最合适的交通路线;根据以往精准的历史数据和参赛人员相关信息,互联网公司就能提前预知如欧冠、NBA等体育赛事下一场哪方夺冠;可穿戴设备和智能健康设备帮助网络收集人体健康数据,或许将提醒你身体罹患某种慢性病的风险……
但是,大数据预测也会遭遇“测不准”的失败。去年百度通过大数据预测电影《黄金时代》将热映,结果恰恰相反。
大数据在改变哪些行业?
今年清明小长假期间,想知道全国哪些景区最火热?各大5A景区舒适度如何?当游客在百度搜索“清明节旅游”等相关内容时,搜索结果页右侧则出现了全国景点拥挤度预测,在预测中,用红、橙、黄、绿等色块体现了不同景区的不同“热度”。
大数据也被逐渐应用于新闻领域。去年1月,央视“晚间新闻”推出《“据”说春运》《“据”说春节》等大数据新闻报道,成为国内最早系统、持续地通过大数据技术改进电视新闻播出形态的栏目,并尝试透过数据挖掘,讲述春运背后的故事。
其实远不只是这些行业,大数据在股市、健康、电影、餐饮等各个行业领域已无处不在。“普遍渗透到各行各业的现象,是当前大数据发展的重要表现,也是大数据从概念走向应用的明显标志。”清华大学新闻与传播学院教授沈阳表示。
央视综合频道新闻编辑部策划组副组长、“据说”系列大数据报道项目负责人郭俊义认为:“随着互联网技术迅速发展,各个行业领域的大数据价值正被逐渐挖掘出来。大数据广泛应用或许不一定给传统行业带来颠覆,但一定会带来巨大变化。如果传统行业不能适用‘互联网+’下的大数据技术,那么可能在竞争浪潮中就处于下风。”
以大数据对传媒领域的影响为例,郭俊义介绍,目前对电视节目的评价标准除收视率外,有些电视台还将网络影响力作为一个重要权重。因为电视节目在网络媒体传播、社交媒体评价等方面的效果反馈,很难通过人工方式收集,大多需要依靠大数据进行细致挖掘和分析。
此外,业界人士也指出,大数据已开辟了一个新闻报道的全新领域。“大数据让新闻表达方式更加数据化,图形、图表等的运用让新闻呈现形式更加可视化;同时新闻生产也更加实时化,依靠大数据挖掘手段,媒体从业人员能迅速准确地找到热门选题;此外,大数据还能帮助新闻产品完成在传播过程中的评估以及传播效果的反馈。”沈阳说。
客观看待大数据预测失准
有人说,就电影行业而言,大数据是市场拓展与经营的救命丹药——因为在对以往数据把握的基础上,大数据对电影票房的预测曾被业界认为“可圈可点”。不过,去年10月份电影《黄金时代》上映,大数据票房预测却遭遇了“马失前蹄”,这也让不少人纷纷质疑大数据预测的准确度。
大数据预测究竟靠不靠谱?重庆大学新闻学院院长董天策认为,大数据预测在不同领域的成熟程度不同,相比气象、经济、机器制造等领域,电影领域涉及的变量颇为复杂,预测过程中也带有较强的偶然性,出现预测偏差情况也属正常。
董天策进一步分析说,网络舆情很多时候和该领域的用户结构有莫大关联,因此,大数据网络用户结构和社会整体结构存在偏差,导致了现有数据积累不能代表整体社会心态。“和传统抽样调查相比,虽然大数据的数据量大、运作速度快,但很多时候存在‘变量遗漏’和‘样本偏差’等状况。即使将所有数据提取出来预测分析,其预测结果也不够准确。这个问题在各个领域都或多或少存在。”
除当前大数据总量普遍存在积累不足、数据收集不完整外,沈阳认为,现有数据中还存在很多“垃圾数据”“脏数据”等干扰信息,由于预测手段的局限,这些因素对预测结果造成了负面影响。
此外,沈阳还指出,在大数据预测过程中,各个行业中随时都可能出现社会突发事件以及人们心理变化等不可控变量,这些因素也会大大影响大数据预测的精准度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21