京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度大数据预测为何测不准_数据分析师培训
未来某一天,在你驱车前往公司的路上,导航系统通过预测交通流量,会自动帮你选择一条最合适的交通路线;根据以往精准的历史数据和参赛人员相关信息,互联网公司就能提前预知如欧冠、NBA等体育赛事下一场哪方夺冠;可穿戴设备和智能健康设备帮助网络收集人体健康数据,或许将提醒你身体罹患某种慢性病的风险……
但是,大数据预测也会遭遇“测不准”的失败。去年百度通过大数据预测电影《黄金时代》将热映,结果恰恰相反。
大数据在改变哪些行业?
今年清明小长假期间,想知道全国哪些景区最火热?各大5A景区舒适度如何?当游客在百度搜索“清明节旅游”等相关内容时,搜索结果页右侧则出现了全国景点拥挤度预测,在预测中,用红、橙、黄、绿等色块体现了不同景区的不同“热度”。
大数据也被逐渐应用于新闻领域。去年1月,央视“晚间新闻”推出《“据”说春运》《“据”说春节》等大数据新闻报道,成为国内最早系统、持续地通过大数据技术改进电视新闻播出形态的栏目,并尝试透过数据挖掘,讲述春运背后的故事。
其实远不只是这些行业,大数据在股市、健康、电影、餐饮等各个行业领域已无处不在。“普遍渗透到各行各业的现象,是当前大数据发展的重要表现,也是大数据从概念走向应用的明显标志。”清华大学新闻与传播学院教授沈阳表示。
央视综合频道新闻编辑部策划组副组长、“据说”系列大数据报道项目负责人郭俊义认为:“随着互联网技术迅速发展,各个行业领域的大数据价值正被逐渐挖掘出来。大数据广泛应用或许不一定给传统行业带来颠覆,但一定会带来巨大变化。如果传统行业不能适用‘互联网+’下的大数据技术,那么可能在竞争浪潮中就处于下风。”
以大数据对传媒领域的影响为例,郭俊义介绍,目前对电视节目的评价标准除收视率外,有些电视台还将网络影响力作为一个重要权重。因为电视节目在网络媒体传播、社交媒体评价等方面的效果反馈,很难通过人工方式收集,大多需要依靠大数据进行细致挖掘和分析。
此外,业界人士也指出,大数据已开辟了一个新闻报道的全新领域。“大数据让新闻表达方式更加数据化,图形、图表等的运用让新闻呈现形式更加可视化;同时新闻生产也更加实时化,依靠大数据挖掘手段,媒体从业人员能迅速准确地找到热门选题;此外,大数据还能帮助新闻产品完成在传播过程中的评估以及传播效果的反馈。”沈阳说。
客观看待大数据预测失准
有人说,就电影行业而言,大数据是市场拓展与经营的救命丹药——因为在对以往数据把握的基础上,大数据对电影票房的预测曾被业界认为“可圈可点”。不过,去年10月份电影《黄金时代》上映,大数据票房预测却遭遇了“马失前蹄”,这也让不少人纷纷质疑大数据预测的准确度。
大数据预测究竟靠不靠谱?重庆大学新闻学院院长董天策认为,大数据预测在不同领域的成熟程度不同,相比气象、经济、机器制造等领域,电影领域涉及的变量颇为复杂,预测过程中也带有较强的偶然性,出现预测偏差情况也属正常。
董天策进一步分析说,网络舆情很多时候和该领域的用户结构有莫大关联,因此,大数据网络用户结构和社会整体结构存在偏差,导致了现有数据积累不能代表整体社会心态。“和传统抽样调查相比,虽然大数据的数据量大、运作速度快,但很多时候存在‘变量遗漏’和‘样本偏差’等状况。即使将所有数据提取出来预测分析,其预测结果也不够准确。这个问题在各个领域都或多或少存在。”
除当前大数据总量普遍存在积累不足、数据收集不完整外,沈阳认为,现有数据中还存在很多“垃圾数据”“脏数据”等干扰信息,由于预测手段的局限,这些因素对预测结果造成了负面影响。
此外,沈阳还指出,在大数据预测过程中,各个行业中随时都可能出现社会突发事件以及人们心理变化等不可控变量,这些因素也会大大影响大数据预测的精准度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01