我羡慕那些从学校走出甚至还未走出的时候,就可以以自己学会的知识和技术来创造价值的人;而另外一些人,比如我,要再过很久才能找到自己的位置。已经开始读这篇文章的话,你与我很可能是同类。
大学期间,我基本算得上是个正牌的文科生。毕业之后,目光却逐渐转向数据分析,这个跨度颇有点不靠谱的意味。不过,在岗位上一段时间之后,我发现像我这样的人不在少数,只是他们可能在开始时距离“数据”没有那么远,例如传媒或者社会科学,但大家跨越自己原专业、进行新知识学习的程度是相似的。
既然如此,也一定会有后来人需要这些故事和鼓励,使他们在立志的时候,得到一些示例、经验以及方法,大致的感知某些路径,以便在专业背景弱势、技术起点偏低的情况下,避免绕弯路,避免挫折,更有效率的前进。
豆瓣配套豆列:从文科生到数据分析师(书籍部分)
任何问题欢迎随时评论探讨。
我们所说的“数据分析”:产业与链条
“数据分析”是一个含义颇为宽泛的概念,并且,在这个数据化的时代,这个概念几乎是无处不在的。为了保证内容的有效性,在这里仅提供我了解的一些方面。
我接触的数据分析,主要是围绕互联网产品展开的。从数据采集前的规划,到采集过程(交互逻辑设计等),到回收数据的整理(机器层面和人工层面),与业务相联系的数据汇总,到后期的报告呈现(项目成果呈现),都有“数据分析”涉及。
对单一产品来讲,数据分析(非挖掘)的集中体现,往往在运营层面。一方面是日常数据的跟踪,另一方面是重大活动、市场策略、新版本上市时的数据监测。产品经理也可以依据产品日常数据进行用户需求分析。从典型性上看,电商和网络游戏是这个框架下比较成熟的两类数据链条。
对于商业咨询/研究来讲,数据分析为观点服务,这里的数据分析,选样、分析过程、呈现都是依附于特定商业目标和商业逻辑的,没有太多的共性。重要的是要知道如何获取高质量的数据,以及熟练使用业界通用的分析方法。
此外,在一些商业提案、演讲、培训中也会用到数据分析,这里的数据分析更是为了主题服务,一方面需要描述市场规模、时间变化趋势等的宏观数据,另一方面需要具体的案例数据,讲述提案所涉及的方法在哪些指标上使客户/用户得到提升。
综上,数据分析可能出现在产业链条的任何一个位置,产品、运营、市场,甚至销售、商务、人力,等等等等,当然职位可能就叫数据分析,但理解这个职位在哪一个业务板块,会更利于数据分析的进行。
数据分析在我看来是个无底洞,越做越觉得技能欠缺——文科生可能尤其如此,因为他们几乎零基础;这如果不令他们陷入迷茫,就很可能令他们陷入知识获取的癫狂状态。
深浅远近的知识一起吃未必不好,不过我还是建议入门早期首先关注三个方面:
1、统计学基础
基本的统计学原理和简单的几种分布的概念。可能在工作中都用不到分布,但这是后续升级的基础。
推荐书目
后两本有所重合,随意看一本即可。【《爱上统计学》我有pdf电子版,需要的话可以留邮箱。】
还有网络课程:Statistical Thinking and Data Analysis
2、业务逻辑
就是业务逻辑,公司与公司不同,岗位与岗位不同。业务逻辑包括数据指标和计算方法,还有一些特殊的时间点、事件带来的例外情况。
可以学习一下市场营销的课程,或者看一本入门教材,了解一下marketing的大致方法论。
如市场营销原理 (豆瓣)
另参考《如何在一周内摸清一个行业》:网站分析公会的微博 新浪微博
3、Excel,SPSS至少一种
最基本的数据处理和制图用工具。一些基础函数和数据透视表是最最基础的技能。
可参考谁说菜鸟不会数据分析 (豆瓣)
另外可以关注一些网络视频课程。
此外,了解一些数理逻辑基础、数据结构基础、软件工程的基础会更方便理解互联网的产品。
个人认为,最大的优势在于,当数据分析需要呈现的时候,很多文科生有能力一击抓住要点。这是需要跳出数据,思考问题本身的时刻。此时有必要相信距离媒体更近、距离项目报告更近的专业出身的学生。
此外,有些数据分析需要宏观层面的联想,甚至一些出人意表的思路。文科生可以发挥创意。
然后,文科生可能有着更多与“人”沟通的倾向和能力,这对数据需求的获取和数据表达的方向至关重要。
培养这些能力,可参考:
另外一些心理学的书籍也可以培养观察数据的角度问题。
不过,总体来讲,上述都略有牵强,这一段是本篇的鸡汤属性较强的地方。因为过于发散的思维可能影响数据分析的严谨性。且如果文科生做数据分析处处是优点,也就不会有这系列文章了。
这个行业需要真正重视数据而不仅是把数据挂在嘴边的,也即,数据是其核心竞争力,或是产品进步的必要推动力。
最好是小公司。大公司里你很可能只是一个汇总excel、写周报的,连上下游的数据维度都摸不到。
边入门边想清楚自己最终想走到哪一步。到市场传播,还是到产品经理,到投资/管理/业务咨询,甚至是向数据挖掘靠拢?每个方向所要关注的东西都是不同的。
不抛弃,不放弃。
同时放轻松,知道这将是一场漫长而艰苦的斗争。
原文作者:任明远
本文转自:知乎
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03