
大数据”告诉你:假日安全是可以预测的
火车站、地铁里、热门景点,达到多少人需要预警?人流量何时达到峰值?在记者采访的不少大数据专家看来,当数据积累足够、分析模型强大,“大数据”就能实现:它不仅知道发生了什么,还能预测将发生什么。
有了大数据,危险可以被预测
如果明知人数已经超过极限,你还会去热门景区吗?如果管理者发现超过阈值了,还会继续让人进景区吗?答案都是否定的。假日来临,景区爆棚、春运拥挤等现象如约而至,在拥挤的城市我们如何保证节日安全?
越来越多的现象说明,危险是可以预测的:1月26日开始,纽约等美国东北部地区遭遇一场罕见的暴风雪,由于提前预测,多州宣布进入紧急状态,最终大幅减少了灾害的损失。
“我国人口众多,重大文体活动、节假日集会等活动中,容易出现因人群过度拥挤而引发的危险乃至事故”。百度研究院大数据实验室一位专家表示,通过大数据对人流量的定位数据、搜索数据进行深度挖掘发现,根据地图上相关地点搜索的请求量,至少可能提前几十分钟预测人流量峰值的到来,并采取预防措施。
上海交通大学大数据工程技术研究中心副主任金之俭说,数据模型可判断出实时人流状态,并可同时预测未来5至10分钟该区域内人群密度的变化趋势。一旦人流密集度超出预警标准,系统将立即发出报警,并根据事态成因、人群行为分析和周边通道状况建立应急疏散模型,从中优化选择最佳方案,供指挥中心发出客流疏导指令。
大数据对于“天灾”救援也有用武之地。上海交通大学大数据工程技术研究中心研究发现,一旦发生自然灾害,通过大数据技术建立海量遥感数据获取、储存与分析体系,将为“理性救灾”指明道路。
例如在地震发生后的第一时间,依靠卫星或航空遥感技术,远程获取灾区现场数据,评估和预测灾区受损情况,明确物资需求,规划救援道路,可以制定合理的救援计划,最大程度减小灾害影响。
割裂的大数据是“闲置数据”
然而现实却是,大数据的分析能力还有待提高。数据存储量不够、数据共享度不高、数据分析力不强、数据传播能力薄弱等问题,正制约着大数据应用于社会治理。
首先,数“不足”。上海交通信息中心主任何承告诉记者,尽管上海交通信息中心掌握的交通方面信息并不少,但是不少数据还是很缺乏。例如,由于公交车乘客下车不用刷卡,所以从技术上就很难知道公交站点实时人流量。
其次,数“割裂”。记者采访发现,目前各个部门拥“数”自重的情况还很严重。一位内部人士表示,这些数据对于部门不仅涉及到安全,甚至与利益直接挂钩。例如公交公司此前就不乐意共享客流数据,因为客流数据能反映企业真实的经营情况,这可能会影响政府相关补贴。
“数据割裂的状况下是无法完成大数据治理的。”中关村大数据产业联盟秘书长赵国栋说。例如,交通部门及运营商能掌握人流聚集情况,而百度、腾讯等公司能通过用户搜索知道聚集原因,综合这些信息才能对人群走向及规模会做出完整的判断。
第三,“不懂”数。何承说,大数据可以提出预警,但是预警值还需要专业部门提出。这个“预警阈值”还需要靠专业人士给出,光靠技术人员是无法提供的。
“就算我们拿到了大量的数据,也不一定知道怎么使用。”金之俭说,我们的模型还不够强大、处理手段还比较单一,多维数据传递了很多信息,而我们只能不断过滤,最终只会让预测的风险出现更多误差。“这就好比三维空间的人无法理解四维空间的信息一样,到了阈值再做预警就晚了。”
用大数据打造智慧的城市
专家认为,首先应利用手机或移动终端,建立“大数据”模型分析并预测风险,发挥其对公共安全危机的重要预警作用,避免大数据成为闲置的“大量数据”。
其次,应加快基于数据资源体系的公共安全数据资源管理平台建设,对城市运行中有关公共安全的相关数据进行采集、整合、加工,梳理城市运行体征,为城市运行安全监测、综合分析、预警预测、辅助决策等提供服务。
“政府需要搭建开放平台,这是大数据治理的基础。”赵国栋认为,无论是数据汇集还是数据挖掘,光靠政府是无法充分体现价值的。
同时,政府可以利用购买服务等方式整合多方数据,共同挖掘数据价值。不少互联网企业掌握了大量搜索、地图等实时信息,但是这些数据如何用于社会治理,还需政府主动作为、提出需求。
专家介绍,通讯运营商手中掌握了大量有价值数据,但这些数据远没有被充分利用。如果运营商数据利用得当,不仅可以预测人流量,预警公共事件,而且可以辅助城市规划、确定公交线路等,这也将提升城市治理水平。
此外,大数据治理还需完善相关法律法规。百度研究院专家告诉记者,一些公司虽然掌握了大量数据,但是其中也涉及用户的个人隐私,怎样使用才算合法现在还不明确。如果要和政府展开合作,也需要在合法合规的前提下,因此期待相关法律进一步明确。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10