京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为驱动 助力农业现代化发展_数据分析师培训
在农业信息化高峰论坛上,“大数据驱动农业”成为热点,其目的在于如何利用大数据提高农业生产的效率和政府决策的科学合理性。随着我国工业化、信息化和城镇化的快速发展,农业现代化的发展也在加速推进,如何实现未来农业持续健康发展是当前政府关注的重点。农业大数据是将大数据的理念、技术和方法应用于农业,使我国农业迈入全面信息化时代,是实现中国特色新型农业现代化发展的重要手段。
一、大数据对农业发展的重要意义
用大数据改造传统农业、装备农业是实现农业现代化发展的重要途径。大数据是现代信息技术的新生力量,是推动信息化与农业现代化融合的重要切入点,也是推动我国农业向“高产、优质、高效、生态、安全”发展的重要驱动力。大数据可将获取的农业资源环境、动植物生长等数据进行存储和加以分析,通过对农业生产过程的动态模拟和对生长环境因子的科学调控,达到合理使用农业资源、降低成本、改善环境、提高农产品产量和质量的目的。
在国家大力推动信息消费的背景下,大数据将开辟农业领域的信息消费市场。一方面,在未来农业信息化发展的趋势下,农民可以依靠农业大数据提供的相关信息及应用系统,安排相应的生产和销售计划。另一方面,政府担负着对农业进行指导和管理的重要责任,如何合理科学的调配资源将十分依赖农业大数据的分析结果及应用。
二、农业大数据发展的挑战与困难
由于农业自身的复杂性和特殊性,对农业数据的采集、分析、应用等较为困难。从类型和数量上看,农业大数据涉及到水、土、光、热、气候资源,作物育种、种植、施肥、植保、过程管理、收获、加工、存储、机械化等各环节,复杂的数据构成再加上广阔的国土面积使得开展相关工作十分困难。另外,随着农业科技创新及物联网的广泛应用,新型的非结构化、非关系型的数据结构大量涌现,传统的农业数据存储与处理架构正面临更大的挑战。
当前我国农业大数据的基础设施建设薄弱,相关分析与应用工作开展严重受限。其一,广大农村地区的农业信息化发展缓慢,农业基础数据的采集设备布局严重不足,从而导致处于农业大数据前端的数据信息采集渠道不顺畅。其二,专业性较强的农业大数据系统平台应用与普及程度较低,使得当前相关研究普遍存在着“只有数据、没有利用”的问题,同时还造成无法进行数据资源横向或纵向的共享。
专业从事农业大数据推广与服务的人才储备不足,农民及基层政府工作人员对农业大数据的效用认知不到位。农业大数据作为传统产业与新兴产业高度融合的领域,一般人员无法在短期内快速介入相关工作,亟需一批既懂农业又懂大数据的复合型人才参与推广和服务工作。
三、我国农业大数据发展的建议
一是建立符合我国国情的农业大数据结构体系,实现关键领域技术与产品的突破。立足于我国农业的发展现状和未来应用的需求,借鉴发达国家农业大数据结构体系的建设经验,将涉及农业领域的相关数据和信息纳入农业大数据结构体系,重点突破分析处理算法、流程图形化、扩展接口服务等领域。
二是完成从国家到各地方的农业大数据平台系统的顶层设计,建立相关标准。农业大数据平台是农民、企业和政府对农业大数据实现操作的核心载体,其内容、功能、部件、流程等的设计将直接关系到农业大数据的应用程度和水平。农业部牵头组织大数据应用单位、科研院所和相关企业,制定农业大数据应用标准,重点包括数据、接口、传输通讯等。
三是加强农业大数据人才培养。鼓励专业从事农业大数据的服务机构发展,加强科研院所与农民、企业和政府的交流,开展对相关人员的培训服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26