
大数据为驱动 助力农业现代化发展_数据分析师培训
在农业信息化高峰论坛上,“大数据驱动农业”成为热点,其目的在于如何利用大数据提高农业生产的效率和政府决策的科学合理性。随着我国工业化、信息化和城镇化的快速发展,农业现代化的发展也在加速推进,如何实现未来农业持续健康发展是当前政府关注的重点。农业大数据是将大数据的理念、技术和方法应用于农业,使我国农业迈入全面信息化时代,是实现中国特色新型农业现代化发展的重要手段。
一、大数据对农业发展的重要意义
用大数据改造传统农业、装备农业是实现农业现代化发展的重要途径。大数据是现代信息技术的新生力量,是推动信息化与农业现代化融合的重要切入点,也是推动我国农业向“高产、优质、高效、生态、安全”发展的重要驱动力。大数据可将获取的农业资源环境、动植物生长等数据进行存储和加以分析,通过对农业生产过程的动态模拟和对生长环境因子的科学调控,达到合理使用农业资源、降低成本、改善环境、提高农产品产量和质量的目的。
在国家大力推动信息消费的背景下,大数据将开辟农业领域的信息消费市场。一方面,在未来农业信息化发展的趋势下,农民可以依靠农业大数据提供的相关信息及应用系统,安排相应的生产和销售计划。另一方面,政府担负着对农业进行指导和管理的重要责任,如何合理科学的调配资源将十分依赖农业大数据的分析结果及应用。
二、农业大数据发展的挑战与困难
由于农业自身的复杂性和特殊性,对农业数据的采集、分析、应用等较为困难。从类型和数量上看,农业大数据涉及到水、土、光、热、气候资源,作物育种、种植、施肥、植保、过程管理、收获、加工、存储、机械化等各环节,复杂的数据构成再加上广阔的国土面积使得开展相关工作十分困难。另外,随着农业科技创新及物联网的广泛应用,新型的非结构化、非关系型的数据结构大量涌现,传统的农业数据存储与处理架构正面临更大的挑战。
当前我国农业大数据的基础设施建设薄弱,相关分析与应用工作开展严重受限。其一,广大农村地区的农业信息化发展缓慢,农业基础数据的采集设备布局严重不足,从而导致处于农业大数据前端的数据信息采集渠道不顺畅。其二,专业性较强的农业大数据系统平台应用与普及程度较低,使得当前相关研究普遍存在着“只有数据、没有利用”的问题,同时还造成无法进行数据资源横向或纵向的共享。
专业从事农业大数据推广与服务的人才储备不足,农民及基层政府工作人员对农业大数据的效用认知不到位。农业大数据作为传统产业与新兴产业高度融合的领域,一般人员无法在短期内快速介入相关工作,亟需一批既懂农业又懂大数据的复合型人才参与推广和服务工作。
三、我国农业大数据发展的建议
一是建立符合我国国情的农业大数据结构体系,实现关键领域技术与产品的突破。立足于我国农业的发展现状和未来应用的需求,借鉴发达国家农业大数据结构体系的建设经验,将涉及农业领域的相关数据和信息纳入农业大数据结构体系,重点突破分析处理算法、流程图形化、扩展接口服务等领域。
二是完成从国家到各地方的农业大数据平台系统的顶层设计,建立相关标准。农业大数据平台是农民、企业和政府对农业大数据实现操作的核心载体,其内容、功能、部件、流程等的设计将直接关系到农业大数据的应用程度和水平。农业部牵头组织大数据应用单位、科研院所和相关企业,制定农业大数据应用标准,重点包括数据、接口、传输通讯等。
三是加强农业大数据人才培养。鼓励专业从事农业大数据的服务机构发展,加强科研院所与农民、企业和政府的交流,开展对相关人员的培训服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13