京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为驱动 助力农业现代化发展_数据分析师培训
在农业信息化高峰论坛上,“大数据驱动农业”成为热点,其目的在于如何利用大数据提高农业生产的效率和政府决策的科学合理性。随着我国工业化、信息化和城镇化的快速发展,农业现代化的发展也在加速推进,如何实现未来农业持续健康发展是当前政府关注的重点。农业大数据是将大数据的理念、技术和方法应用于农业,使我国农业迈入全面信息化时代,是实现中国特色新型农业现代化发展的重要手段。
一、大数据对农业发展的重要意义
用大数据改造传统农业、装备农业是实现农业现代化发展的重要途径。大数据是现代信息技术的新生力量,是推动信息化与农业现代化融合的重要切入点,也是推动我国农业向“高产、优质、高效、生态、安全”发展的重要驱动力。大数据可将获取的农业资源环境、动植物生长等数据进行存储和加以分析,通过对农业生产过程的动态模拟和对生长环境因子的科学调控,达到合理使用农业资源、降低成本、改善环境、提高农产品产量和质量的目的。
在国家大力推动信息消费的背景下,大数据将开辟农业领域的信息消费市场。一方面,在未来农业信息化发展的趋势下,农民可以依靠农业大数据提供的相关信息及应用系统,安排相应的生产和销售计划。另一方面,政府担负着对农业进行指导和管理的重要责任,如何合理科学的调配资源将十分依赖农业大数据的分析结果及应用。
二、农业大数据发展的挑战与困难
由于农业自身的复杂性和特殊性,对农业数据的采集、分析、应用等较为困难。从类型和数量上看,农业大数据涉及到水、土、光、热、气候资源,作物育种、种植、施肥、植保、过程管理、收获、加工、存储、机械化等各环节,复杂的数据构成再加上广阔的国土面积使得开展相关工作十分困难。另外,随着农业科技创新及物联网的广泛应用,新型的非结构化、非关系型的数据结构大量涌现,传统的农业数据存储与处理架构正面临更大的挑战。
当前我国农业大数据的基础设施建设薄弱,相关分析与应用工作开展严重受限。其一,广大农村地区的农业信息化发展缓慢,农业基础数据的采集设备布局严重不足,从而导致处于农业大数据前端的数据信息采集渠道不顺畅。其二,专业性较强的农业大数据系统平台应用与普及程度较低,使得当前相关研究普遍存在着“只有数据、没有利用”的问题,同时还造成无法进行数据资源横向或纵向的共享。
专业从事农业大数据推广与服务的人才储备不足,农民及基层政府工作人员对农业大数据的效用认知不到位。农业大数据作为传统产业与新兴产业高度融合的领域,一般人员无法在短期内快速介入相关工作,亟需一批既懂农业又懂大数据的复合型人才参与推广和服务工作。
三、我国农业大数据发展的建议
一是建立符合我国国情的农业大数据结构体系,实现关键领域技术与产品的突破。立足于我国农业的发展现状和未来应用的需求,借鉴发达国家农业大数据结构体系的建设经验,将涉及农业领域的相关数据和信息纳入农业大数据结构体系,重点突破分析处理算法、流程图形化、扩展接口服务等领域。
二是完成从国家到各地方的农业大数据平台系统的顶层设计,建立相关标准。农业大数据平台是农民、企业和政府对农业大数据实现操作的核心载体,其内容、功能、部件、流程等的设计将直接关系到农业大数据的应用程度和水平。农业部牵头组织大数据应用单位、科研院所和相关企业,制定农业大数据应用标准,重点包括数据、接口、传输通讯等。
三是加强农业大数据人才培养。鼓励专业从事农业大数据的服务机构发展,加强科研院所与农民、企业和政府的交流,开展对相关人员的培训服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10