
视频大数据与图侦应用结合现状分析_数据分析师培训
近年来,中国大规模推进平安城市级视频监控系统的发展,使得视频图像侦查(以下简称图侦)在公安刑侦业务中发挥越来越大的作用,取得的社会效益很高,进而又促进了监控系统的建设规模进一步扩大,加上高清化技术的发展和推广,直接的结果是导致相关的数据量急剧增长,价值密度越来越低。于是,监控领域也主动和被动的跨入了“大数据”的时代。
大数据并不新鲜,早已经在不少领域得到成熟的应用。与日常生活最相关的就是电商,电商通过大规模的商业数据统计、分析,(CDA数据分析师培训)可以得出潜在的商业规律,为下一步的商业行动提供依据。例如经过统计分析可以得到某个领域和时期内的消费规律,商家就可以根据这个规律来向用户提供个性化的广告服务与推荐,促成交易。之前美国的“棱镜门”事件更是大数据的高端军事应用。
公安与大数据应用息息相关
“大数据”不等同于“大数据应用”,不同行业中的数据要形成大数据应用,并非用“拿来主义”就可以解决的,要做好视频监控的大数据应用,首先要确定应用的模式和目标。大数据的应用说到底还是“有目的”的应用,没有一定明确的应用目的和方法,就没有设计大数据处理系统的依据,说白了就是“不知道要什么,那何谈怎么做?”从其他行业只能借鉴到处理系统搭建的技术,但是不能借鉴处理系统搭建的目的与输出。
如此说来,视频大数据系统的发展在哪里?从作者的看来,视频大数据的应用必然首先产生在公安业务中的图侦应用,有以下几点理由:
1.公安掌握了最多的视频数据来源。也是对视频大数据发展最直接的需求者和受益者。视频大数据的发展必然首先为公安下辖的业务服务。
2.相比于其他公安业务,图侦的应用模式多样,思维活跃,围绕着“发现线索”的目的可衍生出多种的技战法,只有从这些具体的技战法中才能提炼出需求,真正告诉系统的设计者“我们要什么”。
图侦里的大数据应用需要哪些?像商业大数据那样找规律的应用似乎还远了点,目前最实在的就是从海量视频数据里把有相同线索特征的图像给找出来,让干警发现出新的案件线索。至于“怎么找?”这就是由公安来提的应用模式了。因此,视频大数据的发展并不是简单的由技术厂商做主导,而是需要公安体制内既有刑侦实战经验,又有科技化功底的复合型人才,共同来参与视频大数据应用的发展,在此,作者也呼吁公安系统重视对于这样复合型人才的培养。
结构化处理是大数据应用的难点
除了应用模式,技术也是目前横亘在视频大数据发展道路上的另一座大山。有很多方面,涉及采集、存储、管理等多方面的领域,但是在作者看来,最大的技术障碍还是在于视频的结构化。商业应用上的数据多为结构化数据,每个数据都由一系列明确的描述属性组成,大数据处理系统则可以根据使用者的要求将不同的属性进行归类,从而发现和掌握事物发展的客观规律。而视频则不然,除了时间和空间的属性外,并没有其他的标签。除了按照时间和地点查找相应的视频外,大多的视频只能靠人慢慢甄别,这离大数据应用还相去甚远。
要做到大数据应用,就必须为每个视频贴上更多的属性标签,也就是业内所说的结构化过程。作者认为这是未来视频应用技术的制高点,其核心是模式识别算法,要做到自动把视频中的特征识别出来贴上标签后入库。这样在日后需要的时候,才能实现海量视频的快速查询和碰撞研判,甚至能像商业大数据那样做到归类统计。
结构化的意义不难理解,只是真正实现起来很难,作者总结了有几个原因:
1.识别什么特征?一副图像或者一段视频可以有无数角度的标签属性去描述,什么才是我们需要的属性?这与我们需要得到的目的密切相关,这就需要公安图侦的人才来归纳终结。
2.识别算法开发难,由于是平面图像,因此特征的识别主要原理就是看图像区域中的轮廓、颜色、纹理与特征库进行比较。但是在同一个物体在不同监控角度的摄像头中显示出的轮廓都不相同,因此无法做到识别。
3.大规模数据处理难,即使做到了识别算法,但是如果要通过数据处理服务器的形式对大规模的视频进行结构化处理,这个建造成本巨大,其能源的耗费在中国这个夏季需要限电的情况里也不切实际。
如此看来,视频结构化的路似乎走不通,但是,目前在业内也出现了许多“曲线救国”的方法。比如:
1.大力发展电警卡口建设:目前电警卡口在图侦上的应用需求和频率早就超越了交警,因为案件基本都要与车辆发生联系,这能找出很多的线索。而卡口电警对于车辆的抓拍角度是相对固定的,能够开发出相应的车辆特征识别技术,电警卡口属于业务需求和技术实现的一个很好的匹配点。
2.结构化识别前移:在摄像机采集到图像的同时就要做好结构化的工作,例如卡口摄像机,就应该把智能识别的算法集成进去。目前不少厂商都推出了相应的智能卡口摄像机,建议政府应该大力推广,在老卡口摄像机更新换代的时候使用这类智能卡口摄像机进行替代,为未来大规模进行视频结构化做好准备。
3.双目等特种摄像机的开发,突破平面图像特征的局限,得到更精准的三维系信息,如人体数量,高度,物体长度等。类似的产品适合应用在重点区域,符合国内目前严峻的反恐形势。
4.物联网等更多感知技术的应用,本文虽然主题是视频大数据,但在业务的发展中,也积极倡议除了视频外,融入更多的物联网感知技术,如RFID技术等,作为视频结构化信息的一个有效补充。
最后,对于视频大数据的产业发展,作者的总结是:前途一片光明,同志仍需努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08