京公网安备 11010802034615号
经营许可证编号:京B2-20210330
英特尔:智能交通的大数据时代_数据分析师培训
作为先进IT技术与传统交通技术的结合,每一次新技术的产生都会进一步推动智能交通行业的发展,随着大数据、云计算等新技术的应用,交通数据与信息及相关服务行业迎来了新的发展点。
交通数据是智能交通的根基,传统的交通数据存在数据采集与使用环节存在数据来源较为单一,挖掘与使用不够充分的缺陷,受制于技术、政策等多方面因素,移动互联网、视频等新生数据来源尚未得到充分的利用。
近日,英特尔数据中心软件部中国区CTO苗凯翔博士与英特尔亚太研发有限公司智能系统事业部商务开发经理顾典先生就大数据在智能交通行业应用及发展前景接受了中国交通技术网采访。
英特尔数据中心软件部中国区CTO苗凯翔博士
英特尔亚太研发有限公司智能系统事业部商务开发经理顾典先生
目前,智能交通信息采集传感器类型较多且品牌繁杂,例如地感线圈、浮动车等,数据采集周期及准确性差异较大,数据类型与格式也各不相同。来自于交通监控、卡口的视频信息优点在于较为直观,但数据量大,对传输链路和后端的数据存储要求较高,查询与分析复杂,且无效信息较多。
因此,大数据技术的优势首先体现在在智能交通行业视频数据及相关处理方面,从端到端的角度处理与考虑问题,全面实现数据价值的挖掘。所谓“端到端”,包括前端视频采集、分析,存储以及后端数据中心处理。以视频数据为例,前端视频数据采集时间较长,网络带宽与存储成本较高,因而不可能将所有视频数据转存到后端,英特尔大数据技术应对视频信息采用了设计中间节点,利用前端储存设备作为数据节点,在数据节点上增加了视频分析功能,对元数据先期进行分析,并将非结构化视频数据转化为格式化的元数据信息,结合特征图片信息存储到后端大数据平台上做挖掘与分析,有效的提高了数据的挖掘分析效率,在某些特定应用场景上,例如基于视频采集的车流量统计,可以近似做到实时的分析,而传统的数据库结构无法做到这一点,实时性较差。
智能交通数据特征之一是数据源的地域特性,数据产生的空间范围广大。产生的频率较高,具有持续不间断的特点。传统的交通数据处理多采用集中计算方式,将产生的数据汇集到交通指挥中心进行处理,量级较大,数据集产生频率也较高,数据分析时在各个节点会读写较为频繁,对服务器集群来说是高并发操作,而大数据技术采用分布式结构,在应对高并发数据访问和读写操作时本身有很大的优势,更加适合智能交通行业数据处理的需求。
智能交通大数据发展:多来源数据的融合与深挖
根据预测,至2016年,智能交通行业产生的非结构化数据将占到总数据量的90%以上,数据来源将更加多样化,而跨部门数据无法共享、数据来源单一、数据深挖程度不足是目前国内智能交通数据存在的主要问题。
跨行业数据应用是大数据发展方向之一,通过融合不同行业数据,可以进一步拓展智能交通数据的内容,提高准确性,进而开发新的行业市场,未来的智能交通服务可以包括从移动运营商获取出行者的位置信息,结合移动互联网及传统互联网的出行者特征,以车辆信息管理为例,车载GPS设备可以实时监控车辆的位置与状况,与车辆驾驶人的信息结合,传到后端大数据平台,与互联网上驾驶人员的信息结合,例如习惯的行驶路线、驾驶行为等,可以得出驾驶者的行为特征,该数据可以为保险、交通管理等多部门提供驾驶人员的基本评价,同时也可以为驾驶者提供安全指导等意见,避免因用户习惯产生的交通事故,带来的潜在经济效益是可观的。
对于政府部门,跨平台的数据共享与应用可以避免因重复建设造成的资源浪费,由于各职能部门的数据库结构、采集的数据量、处理方式均有所不同,因此跨行业数据融合较难实现,大数据技术对智能交通行业跨部门数据共享提供了新的技术手段,凭借兼容性强的软件架构,可以灵活处理各种非规范性的数据表单。
英特尔的大数据战略:开放、合作伙伴与定制化
英特尔是技术型企业,以技术创新引导IT潮流著称,但正如几位受访人所提到的,任何一个公司都无法占领全部行业应用市场,在智能交通领域,英特尔与行业企业建立了开放型的合作关系,在推进大数据行业应用方面也是如此。
在智能交通行业,英特尔的大数据战略首先是底层硬件的充分优化,包括数据的互联互通,网络存储与计算,第二是软件解决方案的优化,为交通行业的特殊需求进行架构与功能软件的优化,建立开放的平台架构。
具体到行业应用层,英特尔采用的推广方式是广泛寻求行业优质企业作为合作伙伴,为行业应用提供充分的支持。
目前,我国智能交通行业的最终客户群体较为特殊,以交通、交管等政府机构为主,英特尔与其行业伙伴针对最终用户的需求有针对性的增加了基于大数据应用的特殊的机制与功能,使得产品更适合国内智能交通行业需求,例如为系统提供中文管理界面等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22