
大数据助保险业加快变革_数据分析师培训
保险业对大数据的偏爱不仅体现在业务处理的高效率和增加保费收入上,更重要的是通过数据整合分析,可以精准定价和精确营销,为客户创造更好的用户体验,增加客户黏性。
同时,保险公司也需要在拓宽数据来源以及做好客户信息安全保密方面,做出更多的探索
当越来越多的传统行业向“互联网+”的风口进军,以“大数法则”为宗旨的保险公司也看到了大数据时代带来的新机遇。一系列的内部改造正给这个庞大的金融行业带来变革。
更好的客户体验
从“下单”到完成销售一张保单仅需6秒钟,2分钟售罄15000张保单,合计3.8亿元的保费,对当前的保险业而言,这已经不是神话。在去年的元宵节当天,珠江人寿就和淘宝合作,借力互联网的云服务和多数字通道技术,不仅创造了业绩,还提供了极佳的用户体验。
互联网的大数据处理、整合、分析能力正在受到越来越多保险公司的重视。
近日,泰康人寿也成立了移动互联部和大数据部,在数据信息中心原有的数据服务、支持服务、信息技术基础设施等职能的基础上,这两个部门将更侧重于与大数据及移动互联相关的应用规划、系统开发、上线维护、技术研究和市场推广规划等工作。
为配合这一部署,泰康人寿在北京中关村数据中心的基础上,将继续在武汉光谷、北京长安街再建2个数据中心。
保险业对互联网和大数据的偏爱不无道理,这不仅体现在业务处理的高效率和增加保费收入上,更重要的是给客户留下深刻印象,增加客户黏性。
“通过对客户内外部数据整合,进行客户分群,建立不同客群特征差异和偏好信息库。然后对单一客户行为和消费偏好进行预测,(CDA数据分析师培训)使客户在线通过各类界面与公司接触时,享受差异化互动沟通服务,增加客户与公司之间的信任和亲密度。”太平洋保险在线商城平台建设人员表示。
有利于精准定价
除了增加全新的用户体验,大数据还有望在产品风险定价方面发挥巨大作用。
据业内人士介绍,保险产品的定价主要分为3步:即保险产品的初步创意,保险产品形态讨论和确认,以及定价模型和保费计算。
“这3步都离不开保险公司的精算师。然而,在大数据时代,传统的精算模型面临着挑战,大数据可能颠覆传统保险的定价方式。”珠江人寿相关负责人在接受采访时表示,未来的核保定价模型将不再局限在以往的性别、职业、疾病发生率、生命表、住院发生率等单一维度的历史数据,将包含地区、生活作息、浏览记录、运动频率、兴趣爱好、上网时间等多维度更加全面的信息。
“大数据这一浪潮并非颠覆传统保险业,而是更好地为保险公司精确营销的战略铺平道路。”太平人寿相关人士认为,保险业走进大数据时代是大势所趋,目前保险公司也都以开明和进取的态度,积极投入资源开发这一领域。
“如果保险公司能够获取客户的财务状况和消费习惯,将能开发出更适合客户的产品,进行产品优化和精准营销。”这一判断已经成为很多保险公司的共识。
数据获取和安全性待解
保险业应用大数据虽然前景看好,但有业内人士指出,目前的瓶颈在于缺乏数据来源。
据了解,应用大数据需要具备两方面的基础条件:一是拥有可靠、有效的大数据的获取来源;二是拥有大数据的专业处理技术,即如何从海量数据中挖掘处理形成有效信息。
在中诚信国际金融机构部高级分析师张佳梦看来,大数据的获取和互联网信息化技术的使用密切相关,而目前来看,这一渠道仍处于布局初期,尚未形成有效的规模和有效的数据基础。另外,保险业此前一直处于产品同质化和规模扩张的粗放式发展阶段,前期投入到数据处理分析上的资源是有限的,因此现阶段的数据挖掘分析处理的技术能力有待提升。
“与大型互联网公司及银行、证券等大型金融机构相比,国内的保险公司特别是对于新成立的中小型保险公司而言,对大数据的应用面临着诸多困难。”珠江人寿相关负责人告诉记者,一方面数据的收集共享有待突破,另一方面如何做好客户信息安全保密必须有相关的制度和措施。
“保单信息关系到客户的个人隐私,做好客户信息的保密工作关系到投保人、被保险人的生活或者财产的安全及客户对公司的信任。因此,如何做好客户信息安全的保密工作不仅对保险公司提出了严格的要求,也是对国家相关法律制度的建设及完善的一大挑战。”据珠江人寿相关负责人介绍,公司严格按照监管规定制定并执行相关的《网络信息安全管理办法》,同时,将客户信息保密工作列入人力资源管理体系,从制度及岗位设置上降低了客户信息外泄的可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10