京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助保险业加快变革_数据分析师培训
保险业对大数据的偏爱不仅体现在业务处理的高效率和增加保费收入上,更重要的是通过数据整合分析,可以精准定价和精确营销,为客户创造更好的用户体验,增加客户黏性。
同时,保险公司也需要在拓宽数据来源以及做好客户信息安全保密方面,做出更多的探索
当越来越多的传统行业向“互联网+”的风口进军,以“大数法则”为宗旨的保险公司也看到了大数据时代带来的新机遇。一系列的内部改造正给这个庞大的金融行业带来变革。
更好的客户体验
从“下单”到完成销售一张保单仅需6秒钟,2分钟售罄15000张保单,合计3.8亿元的保费,对当前的保险业而言,这已经不是神话。在去年的元宵节当天,珠江人寿就和淘宝合作,借力互联网的云服务和多数字通道技术,不仅创造了业绩,还提供了极佳的用户体验。
互联网的大数据处理、整合、分析能力正在受到越来越多保险公司的重视。
近日,泰康人寿也成立了移动互联部和大数据部,在数据信息中心原有的数据服务、支持服务、信息技术基础设施等职能的基础上,这两个部门将更侧重于与大数据及移动互联相关的应用规划、系统开发、上线维护、技术研究和市场推广规划等工作。
为配合这一部署,泰康人寿在北京中关村数据中心的基础上,将继续在武汉光谷、北京长安街再建2个数据中心。
保险业对互联网和大数据的偏爱不无道理,这不仅体现在业务处理的高效率和增加保费收入上,更重要的是给客户留下深刻印象,增加客户黏性。
“通过对客户内外部数据整合,进行客户分群,建立不同客群特征差异和偏好信息库。然后对单一客户行为和消费偏好进行预测,(CDA数据分析师培训)使客户在线通过各类界面与公司接触时,享受差异化互动沟通服务,增加客户与公司之间的信任和亲密度。”太平洋保险在线商城平台建设人员表示。
有利于精准定价
除了增加全新的用户体验,大数据还有望在产品风险定价方面发挥巨大作用。
据业内人士介绍,保险产品的定价主要分为3步:即保险产品的初步创意,保险产品形态讨论和确认,以及定价模型和保费计算。
“这3步都离不开保险公司的精算师。然而,在大数据时代,传统的精算模型面临着挑战,大数据可能颠覆传统保险的定价方式。”珠江人寿相关负责人在接受采访时表示,未来的核保定价模型将不再局限在以往的性别、职业、疾病发生率、生命表、住院发生率等单一维度的历史数据,将包含地区、生活作息、浏览记录、运动频率、兴趣爱好、上网时间等多维度更加全面的信息。
“大数据这一浪潮并非颠覆传统保险业,而是更好地为保险公司精确营销的战略铺平道路。”太平人寿相关人士认为,保险业走进大数据时代是大势所趋,目前保险公司也都以开明和进取的态度,积极投入资源开发这一领域。
“如果保险公司能够获取客户的财务状况和消费习惯,将能开发出更适合客户的产品,进行产品优化和精准营销。”这一判断已经成为很多保险公司的共识。
数据获取和安全性待解
保险业应用大数据虽然前景看好,但有业内人士指出,目前的瓶颈在于缺乏数据来源。
据了解,应用大数据需要具备两方面的基础条件:一是拥有可靠、有效的大数据的获取来源;二是拥有大数据的专业处理技术,即如何从海量数据中挖掘处理形成有效信息。
在中诚信国际金融机构部高级分析师张佳梦看来,大数据的获取和互联网信息化技术的使用密切相关,而目前来看,这一渠道仍处于布局初期,尚未形成有效的规模和有效的数据基础。另外,保险业此前一直处于产品同质化和规模扩张的粗放式发展阶段,前期投入到数据处理分析上的资源是有限的,因此现阶段的数据挖掘分析处理的技术能力有待提升。
“与大型互联网公司及银行、证券等大型金融机构相比,国内的保险公司特别是对于新成立的中小型保险公司而言,对大数据的应用面临着诸多困难。”珠江人寿相关负责人告诉记者,一方面数据的收集共享有待突破,另一方面如何做好客户信息安全保密必须有相关的制度和措施。
“保单信息关系到客户的个人隐私,做好客户信息的保密工作关系到投保人、被保险人的生活或者财产的安全及客户对公司的信任。因此,如何做好客户信息安全的保密工作不仅对保险公司提出了严格的要求,也是对国家相关法律制度的建设及完善的一大挑战。”据珠江人寿相关负责人介绍,公司严格按照监管规定制定并执行相关的《网络信息安全管理办法》,同时,将客户信息保密工作列入人力资源管理体系,从制度及岗位设置上降低了客户信息外泄的可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04