
大数据带来商业模式的成熟发展革命
大数据带给人们巨大的理念上的改变,同样它也会带来商业模式的成熟发展甚至革命。对大数据在商业上应用的1.0、2.0和3.0版本,做了细致的分析。
大数据1.0
大数据1.0很好理解,一个企业自身的业务需求产生大量数据,利用这些数据,通过深入分析,可以优化相关的业务。在这个时候,数据起到了指导决策的作用,举几个例子,比如说沃尔玛,它有大量的会员卡和零售数据,所以通过这些数据可以制定更好的优惠卷和个性化商品推荐服务。
也通过这些数据它能够更好地管理产业链、仓储和物流。我们在北京做过一家,是专门做电子商务服务的,拥有2亿多用户的数据和8千万单品的数据,就是怎么样做商品的个性化推荐。利用这些个性化推荐,不仅可以直接做自动化展示,还能够帮助电商更好地编排在网上店铺的摆放等等。
豆瓣是全球做社会化推荐最好的一家企业,利用评论数据,也利用点击浏览数据能够做到听其言观其行,利用这些数据可以做到几乎最好已知的社会化推荐,这样的例子还有很多。
还有一家企业,可以把电子化定义拿来做智能的诊断,亚马逊是做个性化推荐的鼻祖,它可以知道几乎你手机上安装的所有应用,事实上它能知道你的消费水平,有没有小孩,有没有车,有没有得什么慢性病,有没有金融支付终端等等,它还知道你在哪个地方,如果是这样一些企业打这样的个性化广告效果会很好。
大数据的2.0
大数据的2.0和1.0的理念有所不同,这里强调数据的外延。数据除了从自身的业务产生并解决自身问题以外,我们最终是数据本身有能力解决其他的问题,同样我们也需要有能力去把其他很多其他的数据放在一起解决自身的问题,这就是所谓的数据外部性问题。这里要求企业搜集与目标业务直接或间接关联的大量异质数据。
建立复杂的分析和预测模型,产生针对目标业务的输出。这时候数据本身就是决策。为什么这样说?虽然在这种复杂的模型中,我们已经很难看到真正的因果关系,我们并不知道是为什么由A到B,由B到C,但是我们只知道选择A比选择B好,所以数据本身不仅仅是指导决策,而就是决策。
举几个例子,比如说Zestfinance是一家很奇怪的信贷公司,可以快速发放小额贷款,所利用的不是平常讲的背景调查等等,而是它分析社交网络以及在其他购物等等频道留下来的你的活动记录,所以他说所有的数据实际对我们来说都是新闻数据,用这种办法来预测还贷能力,计算信用度,最典型的是把其他和你本行业看起来没有直接关联的数据用起来做本行业的事情。
大数据3.0
希望大数据3.0能进入真正的大数据时代。在这里我们对数据的质量价值,数据好不好,有多大价值,如果交换要如何付费。如果别人拷走了你的数据怎么算?还有数据的权益。还有我们特别关心的数据隐私安全等等,我们要有充分的认识。要又可以量化或者可以保障的措施。
在这个时候,类似于电信运营商有一种叫做数据运营商会出现,会有很多数据,在上面会有小的科研团队或者创新型企业,也有数据提供商和数据加工商,他们会产生不管是下载还是API接口还是其他的产品,会成为一种单独的产品在上面出售,有自己的分成模式。这个时候会出现一种新的数据客,他们在数据市场中玩粗加工的数据或者是粗加工的数据产品,再产生新的数据产品,以ATI的形式投放到数据市场。
就像手机市场中,经常有两三个人很聪明的人开发一个很有趣的应用,就有很多的使用。那时候可能有一个很聪明的人,开发和有趣的数据产品,可能很多企业政府科研团队都会使用他们的数据产品。
当然,最重要的是,所有的学术团体、企业和政府,都能够使用到大数据,这就是为什么讲今天叫大数据时代,因为如果只有两三个人,或者七八家企业能够用到大数据这不能叫一个时代,就像十个人上网不能叫互联网时代。
所以将来当我们有了大数据之后,我们希望的是未来某一天通过更好的索引,更好的体系结构的支撑,使得普通的科研团队、普通的创业者都能够有办法获取你所想获取的数据里面的一些逻辑片断,我们未来操纵大数据应该是四两拨千斤举重若轻,尽管我看到的是一个很大的数据,但是操作起来就像单机版里面的一个小文件一样,这是我们未来的希望。
总结
大数据从1.0到2.0到3.0,我们提过一个概念,商业模式从2B到2C到2D、2Data,实际上是有两条线在驱动它,一条线我们希望它越来越粗犷、开放,数据一定要开放出来,以共享的心态。一条线我们希望它越来越精深,就是深入地分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29