
大数据时代:一张图观2000年文化迁移
这些线条也许看上去很像北美和欧洲之间的航线,或是夜间卫星图,城市像星座一样被点亮。
But look again.
但请再瞧一瞧。
These animations chart the movement of Western culture over the past 2,000 years, researchers report Friday in the journal Science.
根据一研究团队在周五《科学》杂志上的报告,这些动画其实纪录了过去2000年间西方文化的迁移。
To make these movies, art historian Maximilian Schich and his colleagues mapped the births and deaths of more than 150,000 notable artists and cultural leaders, such as famous painters, actors, architects, politicians, priests and even antiquarians (people who collect antiques).
为了制作出这些影像,艺术史学家马克西米兰·舒尺和他的团队在地图上标出了15多万位艺术名人和文化领袖的出生和死亡地点,其中不乏著名的画家、演员、建筑师、政治家、牧师,甚至是古文物收藏家。
A shimmering blue dot lights up each new birth, while red dots represent each death.
地图上闪闪发亮的蓝点代表出生地点,红点则代表死亡地点。
We can watch as artists flock from rural areas to urban centers like London, Paris, Rome and Berlin after the Renaissance. Then in the late 17th century, people start to catapultfrom Europe into the eastern U.S. and then eventually leapfrog over to the West Coast.
我们可以看到,艺术家在文艺复兴之后纷纷从乡村迁往伦敦、巴黎、罗马和柏林等中心城市。而到了17世纪后叶,他们很快从欧洲迁往美国东部,最后争相迁往西海岸。
“We’re interested in the shape of the coral reef of culture,” says Schich, of the University of Texas. “We are taking a systems biology approach to art history.”
舒尺来自德克萨斯大学,他表示,“我们对文化所呈现的外形很感兴趣。我们采用了一种系统生物学的方法来研究艺术史。”
After mapping the births and deaths, Schich and his team analyzed demographic data to build a model for how people and their cultural achievements ebb and flow across continents.
标出出生和死亡地点后,舒尺和他的团队对人口数据进行了分析建模,借此反映艺术家及他们的文化成就是如何在大陆间变迁。
Right now the team has only maps for the U.S. and Europe. But Schich hopes to extend these visualizations beyond the Western world.
目前团队仅绘制了美国和欧洲地区的地图。但舒尺希望继续利用这种可视化方式呈现西方世界以外的地区。
And the model isn’t just fun to look at. The data also reveal trends and patterns in human migration over the past two millennia.
该模型不只是看上去有意思而已,其数据反映了人类在过去2000年间的迁移趋势和模式。
The models are the latest application of a rapidly growing field, called network science — which uses visualizations to find the underlying patterns and trends in complex data sets.
该模型是网络科学的最新应用成果。网络科学利用可视化技术反映复杂数据集的潜在模式和趋势,目前该领域的发展速度很快。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23