
大数据、物联网、智慧城市三者之间的关系
大数据的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
中国已步入大数据时代
有人说大数据来了,但只是在美国而不是中国。专做政府数据管理的同方对此的看法是:中国对大数据的理解普遍还不那么深入或者与美国的理解有所不同,但不能否认的是,中国已经步入大数据时代。现在中国的很多部委都已经在研究大数据、运用大数据。美国将大数据提升为国家战略,中国还没有明确提出,但已经把大数据上升为与国防一样的高度,多部委还联合发布了鼓励措施。我国政府对大数据的敏感度快速提高,并正在采取措施。所以说,中国已经步入大数据时代,这种重视是由政府层面自上而下进行普及的,可能还未普及到普通百姓层面,但各级政府已经有了高度重视。邬贺铨院士也曾表示:“我国将产生全球最大量的数据,要重视大数据的开发利用和管理。”
大数据的关键在于分享。我国智慧城市发展的一个瓶颈在于信息孤岛效应,各政府部门间不愿公开、分项数据,这就造成数据之间的割裂,无法产生数据的深度价值。关于这一问题,一些政府部门也有清醒的认识,开始寻求解决方案,这是受自身的需求驱动的。比如,一些政府部门原来不愿分享自己的数据,但现在开始寻求数据交换伙伴,因为他们逐渐意识到单一的数据是没法发挥最大效能的,部门之间相互交换数据已经成为一种发展趋势。同时,随着各方面的发展及政策的推进,很多以前不公开的数据也逐渐公开了,这对大数据的发展都是有力的支持。
物联网技术推进大数据发展
物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京7.21暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以 物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京7.21暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。
物联网技术跟大数据什么关系?当水位计的点增多后,就会收集到更多的数据,这样更便于发现一些规律并发出预警,这是采用大数据的技术手段自然而然就能做的事情。在点位数少的情况下,数据量不够大,只能解决一部分问题。所以说,正因为有了物联网,大数据布的点越来越多,自然而然就要会去分析实时数据。数据的挖掘,原本是对于历史数据的挖掘,现在对于实时数据的挖掘也是一种趋势,说明物联网的技术在推进着大数据相关技术的发展。及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。
大数据支撑智慧城市的发展
城市运行体征是通过数据进行量化表现出来的,但这些数据散乱在政府的各个部门中,同方的职责是收集各部门有关城市运行体征的数据,帮助城市管理者进行数据汇总、分析,最终对城市体征的量化形态即各类数据进行管理,供政府管理者使用。
政府部门做的每一个决策都需要长期的调研,调研的资料来源于政府部门运行、城市运行的长期积累。政府信息化的高速发展已使政府产生了几百TB的数据。但数据本身没有任何意义,只有经过一定的系统分析之后,才能发挥数据的价值。智慧城市的每一个细节都会产生庞大的数据,同时,智慧城市的运行基础也来源于对大数据的深度分析。
大数据的表面是一系列静态的数据堆砌,但其实质是对数据进行复杂的分析之后得出一系列规律的动态过程。政府部门本身没有去做这样的事,这就需要企业对其进行支撑,同方看到了大数据对城市运行的重要意义,选择政府作为突破口,是形势发展的要求,也是同方大数据的独特之处。值得说明的是,同方大数据不参与政府决策,只是为政府决策提供数据支持。用数据的直观形式展现业务之间的关系,用数据表现城市发展变化和趋势,分析总结出城市存在的问题,为政府部门的决策提供辅助。
城市运行体征的管理也需要大数据的推动。大数据在反映城市运行体征的时候,并不需要了解城市部门的主要业务及运作流程,单纯从数据的角度出发,通过计算机软件分析之后,数据就能得出一些规律,不关乎业务,不关乎结果,但能完全反映出数据之间的关联性。从大数据的角度出发,驱动城市运行体征发展,是一个可以在决策前段刨出人力的纯计算机运作模式,这样的好处是运作的量化和规范化。
对于大数据、物联网与智慧城市的发展,中国信息技术权威专家――国务院物联网领导小组组长、中国工程院邬贺铨院士曾有一个很深奥的表述:从物联网到大数据再到智慧城市,是“格物致知”的过程,通过分析决策达到“知行合一”。
智慧城市惠及每个人
大数据驱动下的智慧城市,关乎每个人的生活。最普遍的例子就是天气预报,以前的天气预报只会预测一下天气,但现今的天气预报会告诉公众更多的信息,如气象指数、空气污染指数、穿衣指数、驱车安全指数等,甚至是否有利于运动,对发型及妆容的影响都有说明。这是能让普通百姓切身体会的智慧生活,未来,教育、交通等关乎人们衣食住行的方方面面都会变得智慧起来。教育方面,我们可以看看美国的做法,美国每个大学都会将升学率、就业率、毕业生的年薪水平等如实展示,这对学生选择学校专业等是很有利的数据支持。交通方面,怎样畅通城市交通,怎样寻找停车位,选择哪种交通方式更便利安全等,都是智慧城市的未来状态。
当提到智慧城市的未来发展时,赵英表示:智慧城市来源于智慧决策,智慧决策来源于人的智慧。当每个人都很智慧的时候,一个城市也会变得智慧起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23