京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据也有黑暗面,what比why重要_数据分析师
对于大数据的四个特性我们当然了解,相关性也找到了,接下来就是如何利用大数据创造出价值。“大数据是什么”,“大数据跟我有什么关系”,这是很多人第一次听到大数据心中所产生的疑问。
据《30杂志》报道,麦尔•荀伯格在千余名想了解未来趋势的观众面前,做了一场精彩易懂的演说,告诉了企业及民众,什么是大数据。
大数据找出相关性
2009年,全球出现一种新的流感病毒H1N1,当时美国也无法幸免,疾病管制局(CDC)要求第一线的医师遇到H1N1流感病例,必须立刻通报。即使如此,通报速度仍总是慢一步,会晚1到2个星期。这样的时效让疾管局无法掌握真实情况,对症下药。
当时有几位Google 工程师在著名的《自然》科学期刊中发表了一篇论文。他们透过美国最常使用的前5000万个搜寻关键字,再与疾管局2003-2008年间的流感传播资料加以比对,用高达4.5亿种不同的数学模型,找出这些字出现的频率、时间及地点,有没有统计上的相关性(correlation)。最后被他们挖到宝了,这套软件找出了45个流感关键字眼,放进数学模型之后,预测结果与官方公布的真实资料吻合,有强烈的相关性。
Google 运用这套数学模型,再一次精准地掌握了流感发生的高峰及地区,让防疫工作同步进行,不落后。
再说另一例子,天文学来说,美国太空总署执行一项叫史隆数码巡天计划(Sloan Digital Sky Survey),从2000年开始,他们用位于美国新墨西哥州的天文望远镜去收集资料,计划开始不过几星期,收到的天文资料量就已超过了过去所有天文学历史的总和。到了2010年,这个计划收到了140TB 的资料量。但是接续的新计划,预计2016年登场,未来的巡天望远镜在5天内,就可收到这些资料量。
荀伯格说,当资料进入天文数字时代,荀伯格提醒:到底大数据有多大?其实不是那么重要,重点是在放大,扩大资料量等级,就能做出少量资料做不到的事。
举例来说,画一张马的图画,不是太难的事,但如果画了很多张马的图画,再以每秒24帧来呈现这些图画,就成了动画。这里要强调的是“量变”产生了“质变”,巨量就是这个道理,量的不同,也改变了本质。
what比why重要
量增加了,就出现另一项大数据的特色:乱(messy)。巨量资料的内容常是混乱不齐,质量不一。这是因为,巨量资料的收集过程中,它只要一个大方向即可,不需要讲究到一寸、一分。“这并不是说我们放弃了精准这件事,只是不再将精准奉为圭臬,”荀伯格说。
举例来说,我们要测量某个葡萄园的温度,如果整片葡萄园只有一支温度计,那这支温度计就要十分精准,不能故障,但也意味着它会很贵。换句话说,就是不能有任何杂乱或出错;相反的,如果我们今天在葡萄园里放了100支温度计去测温度,就可以用便宜一些,简单的温度计测出很精准的温度。
100支温度计代表的是量大,尽管其中几支可能不那么精准,但却可以收集到大量数据。比起只靠一支温度计来说,更可看到全貌,代表全体。那此时,一点杂乱就显得微不足道。
重点又来了,荀伯格忽然站起来向所有在场的观众说,大数据时代,资料数量比资料质量更重要。更不要为了一点点信息的偏差而影响了整体分析,想处理掉不精准的信息,成本会很高,也没有必要!
另一个有趣的例子是沃尔玛(73.54, 0.00, 0.00%)(Walmart),他们从庞大的交易记录上发现,在飓风来袭前,销量大增的不只是手电筒,还有一种美国小甜点 Top-Tarts,店家会在每次飓风来临前,把一盒一盒的 Top-Tarts放在风灾的必需品架上,方便急忙的顾客一次满足,“特别是草莓口味的,卖得最好。”
请注意,这里Walmart不去弄清楚为什么飓风时人们特别想吃Top-Tarts,而是把这个相关性找出来,直接采取更有利的营销动作。
荀伯格特别强调,大数据时代,what比why重要。
再举一个例子,发生在他朋友,也是大数据专家,任教于华盛顿大学的教授伊兹奥尼(Oren Etzioni)身上。2003 年时他想从西雅图塔机到洛杉矶参加弟弟的婚礼,他想愈早订票愈能买到便宜,几个月前他就买好了机票,也觉得买得很便宜。没想到他在航程中,出于好奇问了隔壁乘客买多少钱,何时买的。结果,一问之下,都回答最近才买,且都比他买得便宜,他十分生气。
下了飞机后,他决定去好好研究一下购买机票这件事。他发现,如果平均票价呈现下跌,买票就可以慢慢来;如果价格上扬中,你就要先订票,以免它水涨船高。
伊兹奥尼花了41天的时间去比对一旅游网站中超过12000笔的票价资料,他建立了一个模型,让模拟的消费者都省下了大笔的机票钱。在这模型里,消费者不懂“为什么(why)”,只知道“正是如此(what)”,消费者要决定现在是“买或是不买”。
后来这套模型发展出创业计划,他创了一个Farecast网站,消费者可以做出最佳判断,何时该买,还是不买。
大数据与价值
当我们知道了大数据的特性,也找到了相关性,接下来就是靠着它创造出价值来。
美国西雅图有一家专门收集车辆实时定位的资料公司Inrix,它的资料来自上亿台的车辆。同时,它也推出手机 App服务,通过提供服务换取特定的司机资料,包括他们曾开车去的地方、天气及路况等。他们将收到的资料再出售给一家投资基金,该基金根据大型零售商场附近的路况推测业绩,在零售商公布季报前,抢先决定该买入或卖出。因为车潮就是钱潮。这就是价值。
英国的罗尔斯罗伊斯是著名的飞机引擎制造商,它通过在引擎上安装了一个监控器,以掌控引擎是否正常运转。结果随着他们收集到的资料中发现,当引擎出现哪些信号异常,引擎可能会发生问题,这个监控变成了预测,大大减少飞安事故。罗尔斯罗伊斯从过去单单的制造引擎公司,转型为服务咨询,他们让数据产生出价值。
荀伯格说了许多大数据的美好,但他强调,大数据有其黑暗面:隐私当然是一个该关注的焦点,但他强调,更可怕的是各种算法,去预测是不是会患心脏病?或你是否会犯罪等。有时,依靠大数据做出的演算与预测,如果与自由意志不符时,孰轻孰重?
同时,我们也担心,愈来愈多的企业会掌握更多资料,但如此庞大的资料为他们所收集,拿去做了什么?什么用途?不一定能受到监督与管理,这是重要议题。
“巨量资料是为人类所掌控,而不是被巨量资料所掌控,”这是荀伯格最后的提醒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22