京公网安备 11010802034615号
经营许可证编号:京B2-20210330
促进征信业在大数据背景下的跨越式发展应建立符合大数据的征信法律制度和业务规则体系;加强征信产品创新;提高大数据技术处理能力;健全大数据信息共享机制;提升征信监督管理水平;建立符合大数据的信息安全保护机制。
近年来,随着互联网技术的发展,大数据越来越受到关注,其应用逐步渗透至多个行业,开启了全新的数据时代。数据是征信业务开展的基础资料,征信活动 主要是围绕数据进行采集、整理、保存、加工,并最终向信息使用者提供。大数据不仅为征信业发展提供了极为丰富的数据信息资源,也改变了征信产品设计和生产 理念,成为了未来征信业发展最重要的基石。我国征信业发展尚处于起步阶段,在大数据时代存在征信法律制度和业务规则不够完善、征信机构数据处理能力有待提 高等问题。未来征信业面临的机遇和挑战并存,研究大数据时代征信业的发展具有重要意义。
目前,对大数据无公认的定义,一般认为大数据是指所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为服务于经营决策的资讯。大数据的出现,使征信业发展面临的外部环境发生了巨大的变化。
1.优化征信市场的格局。随着征信机构市场化运营机制的确立,将会有更多信息资源优势的企业借助互联网、大数据 等信息技术的创新进步,从征信业薄弱环节切入,通过服务创新或产品创新打破原有的征信市场格局。一是电商企业将组建征信机构。以阿里巴巴为例,其利用淘 宝、天猫、支付宝平台上的行为数据和信用情况,建立成了涵盖数十万企业的数据库,具备了开展网络征信服务的基础和实力。二是金融机构建立征信机构。例如平 安集团拟整合网贷信息、银行信贷信息、车辆违章信息等,建立金融数据挖掘中介机构。三是新型征信机构应运而生。一些大数据公司依靠技术手段,以电子商务、 社交网络为平台,采集信息,提供信用信息服务,可能成为新型的征信机构。
2.推动征信业的转型升级。大数据给征信业带来转型升级的历史机遇,未来的征信业将以智能数据分析系统为平台, 利用大数据挖掘技术,支持征信业发展创新。大数据支持征信业升级和转型主要体现在二个方面。一方面大数据促成征信业建立全新的风险控制体制,向有效监管转 型。大数据技术对客户信用信息进行深度挖掘,实时监控,防范潜在的信用风险。另一方面大数据支持征信机构向精细化管理转变。大数据的核心优势在于信息挖 掘,精细化管理的首要条件是充分信息化,包括业务信息化和管理信息化。
3.促进征信业差异化竞争。征信机构通过采用不同的数据来源,不同的数据处理方式,针对不同的客户,开发出不同 的产品,满足不同层次客户的市场需求,实现差异化竞争。例如,金融机构对征信服务的需求将从单个借款主体的信用报告,扩展到运用信用信息拓展网络影响和金 融服务渠道。P2P网络借贷、电商金融等业态需要借助信用信息共享防范风险,降低交易成本。
4.拓展征信数据来源。大数据使征信数据来源呈现多元化、多层化和非结构化的特点,更加全面和真实地反映信息主 体的信用情况。征信机构从在政府部门、金融机构等实体机构中采集信息,转向从互联网等虚拟世界中获取信息。在数据采集的广度和深度上,征信数据量将激增, 采集包括证券数据、保险数据、商业信用数据、消费交易数据和公共事业缴费数据等,全面地覆盖与信息主体相关的各项因素。
1.现有征信业务规则与大数据时代不匹配。我国有关征信业的法律法规的规制对象主要是传统金融领域,《征信业管 理条例》及其配套制度初步构建了我国征信业的法律法规框架,但是《征信业管理条例》是否满足大数据时代征信业务的规则要求,尚未得到市场验证。目前,缺少 对大数据时代征信活动的规范,如有关大数据采集、整理、保存、加工和处理的制度要求。因此,还需要进一步细化和完善征信业务规则,以更好促进大数据时代征 信市场的发展。
2.征信业监管技术和水平需改进。大数据时代给征信业发展带来深刻影响,同时也对征信业监管提出了更高的要求。 要适应大数据时代的征信监管需求,征信监管水平要能跟上大数据征信的发展水平,监管政策要符合大数据的基本规律,监管人员要具有适应大数据的知识和能力。 在行业自律监管方面,我国行业监管尚未发育成熟,行业标准尚未统一,行业规范以及行业职业道德等内容尚未完善。
3.信息安全和隐私保护形势严峻。随着数据的进一步集中和数据量的急剧增长,对海量数据进行安全防护变得更加困难,数据的分布式处理也加大了数据泄露的风险,隐私保护和数据安全成为制约大数据发展的瓶颈。大数据时代下的征信业同时具有了大数据和征信两个特性,对隐私保护和数据安全的要求更高。
4.数据处理能力亟待提高。如何有效处理大数据,是大数据发挥作用的重要环节。益百利等大型征信机构在数据处理 方面已经采取多层次数据挖掘等先进技术,利用私有云平台,对系统中海量数据进行处理和研发,减少主观判断,提高风险预测的准确性。但是目前我国征信机构发 展起步较晚,缺少对数据处理的核心技术,导致数据分析结果不能够准确的识别个体或组织的行为。
5.硬件基础设施需要全面升级。过去征信机构存储征信数据主要是在本地建立数据库,大数据时代随着数据量呈几何级数的增加,征信机构硬件技术的发展已经跟不上数据容量的增长速度,数据存储面临较大压力。
随着大数据时代的到来,未来征信业发展要从制度设计、技术进步、信息共享、监督管理、隐私保护等方面不断创新,促进征信业在大数据背景下的跨越式发展。
(一)建立符合大数据的征信法律制度和业务规则体系。
现有的征信法律体系都是基于传统数据模式下制定的,难以满 足大数据等新技术条件下征信业发展的制度需求。在征信业务开展过程中,大数据的收集使用可能涉及国家信息安全、企业商业秘密、公民隐私等,为了给大数据条 件下征信业发展提供制度保障,需要从征信立法层面完善信息安全和数据管理的法律制度,明确大数据背景下数据采集、整理、加工、分析、使用的规则,确保大数 据时代征信业发展有法可依。
(二)加强征信产品创新。
随着可获得的数据量呈几何倍数的增加,征信机构通过深度挖掘和使用这些数据,就可以极 大地拓展征信产品的种类,不仅能够提供信用报告查询等基础服务和产品,还可以提供其他综合性产品,满足社会各界的需求。从征信产品的满足层次高低的不同, 可以分为宏观、中观和微观的征信产品。宏观层面,征信机构通过大数据分析可以对系统性、全局性的风险信息进行预测。中观层面,征信机构的海量数据包含大量 时效性和政策含义都很强的信息,可以灵活多样地进行多维度组合分析。把这些信息整理和挖掘出来,建立对应的指数体系,有助于行业监管。微观层面,在信用主 体(包括企业和个人)同意的前提下,征信机构可以提供每一个信用主体的信用报告、信用评分、身份验证、欺诈检测、风险预警、关联分析等多种数据服务。
(三)提高大数据技术处理能力。
大数据价值的完整体现需要多种技术的协同。数据抽取与集成、数据分析以及数据解 释,是大数据时代征信数据处理的三个重要环节,在数据处理过程中搜索引擎、云计算、数据挖掘等新技术使用必不可少。因此,征信机构要加大数据处理分析专业 人才队伍的培养,同时要引进大数据处理的专业方法和工具,建立前瞻性的征信业务分析模型,更好的把握、预测市场和信息主体的行为。
(四)健全大数据信息共享机制。
完善的大数据标准体系是推进数据共建共享的前提。目前,我国来自各行业、各渠道的数据标准存在差异,成为阻碍数据开放和共享的关键瓶颈。建议尽快统一标准和格式,以便进行规范化的数据融合,提升大数据的整合能力,打破资源部门间的信息孤岛,从而完善信息共享机制。
(五)提升征信监督管理水平。
对于大数据时代的征信业,在注重市场培育的同时,要加强对行业的监督管理,防范信 用风险。监管部门自身也要不断学习,一方面制定符合大数据的征信业务规则,推动征信业尽快适应大数据时代的发展要求;另一方面要制定并实施符合大数据时代 征信业的监管措施,建立跨部门合作监管机制,引导和推动行业自律,以行业自律促进大数据时代下征信业的有序发展。
(六)建立符合大数据的信息安全保护机制。
在制度设计上,要规定信息主体、信息提供者、征信机构、信息使用者的权利、义务、责任,明确隐私信息的范围,确保信息主体的信息依法使用。在技术上,要研究并采用最先进的网络信息安全技术,从信息的存储、传递、使用、销毁等全流程进行信息保护,防止信息外泄。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17