
2015年移动十大趋势:一切都是数据
搞到一份全球移动解决方案提供商Golden Gekko的内部预测。在研读大量领先分析师观点基础上,该机构又与谷歌、Facebook、微软、苹果及大量零售金融汽车医疗保健行业企业交流探讨,写下这份《2015 年移动十大趋势》。
趋势一:准备好“移动 3.0”(Get ready for Mobile 3.0)
移动App第一代主要表现为“花哨的品牌和游戏”;
第二代,则是调动现有在线服务,比如将已有的电商搬到移动上,再比如,推出像Uber这样的预订服务,以及像 Instagram 这种创造了只在移动端运行的媒体服务。
但第三代将表现为:充分利用用户所在地理位置、上下文情境(Context)、行为方式及用户数据,采取一种独特的移动接入方式。这也包括购物类App,它要既能提供用户在家网购的体验,又能提供用户在物理店可以发现最好交易,并能找到想要东西的那种体验。一个好的“全渠道”用户体验,需要的不只是个速度很快的网站。
趋势二:智能手机作为物联网控制中心(Smartphone as the control hub for the internet of Things)
这个趋势早就开始了,但随着无数可穿戴设备、连接设备及物联网到来,智能手机开始成为一个控制中心。
智能手表、家用电器、家庭娱乐系统、传感器、智能车辆、安全等越多越多东西通过智能手机控制,并还有一些在等待被控制。位于Palo Alto的Mind Helix 甚至允许你把废弃的智能手机变成高性能家庭自动化/监测系统;而另一个叫Dormi 的App,把你的Android 智能手机变成了婴儿监视器。
智能手机的特点是:个人、时刻在身边、安全、有足够计算能力,有允许任何机构去利用这个设备的成熟开发环境。你需要思考,如何利用智能手机作为一个你系统的物联网控制中心,并创造出新收入,提高客户体验,变得更有效率,或直接产生出新东西。
趋势三:移动设备成内容消费主要工具(Mobile devices generate the majority of all web browsing and media consumption)
2014年,人们通过移动设备消费内容的总时长,占通过所有网络方式消费内容总时长的35%-40%。然而,由移动产生的交易仍很低,仅占所有交易的15-20%。
我们预测:2015年,通过移动设备包括平板电脑产生的交易额将首次超过桌面,主要驱动力是移动有机增长、手机平板(大屏幕手机)增长和更多移动网站和服务产生。
大部分仍依赖PC卖东西的公司需要重新审视自己移动方式,以保证在不同独立渠道,转换率一致。再强调一次,一个速度很快的网站,不足以提供一个好的全渠道用户体验,零售商需要从一个基于地理位置的顾客视角,去重新思考移动购物使用情况,用户当时当地状态和需求。
趋势四:“手机平板”崛起(Phablets-Between smartphones & tablets)
按IDC预测,今年屏幕为5.5- 7英寸的手机平板(大屏幕手机)和智能手机全球销售额将超过平板电脑。而到2018年,手机平板将以24.4% 市场份额与更小的智能手机市占率进一步缩小差距,位居第二。
今年,将是“手机平板”突破之年,智能手机屏幕正变得越来越大,并需要开发者开发出适应这种屏幕的App。但消费者对设备和屏幕到底大到什么程度最舒服,目前还没答案,仍在尝试寻找。
趋势五:大数据无处不在(Big data becomes integral to all mobile services)
过去一年,几乎所有公司都已开始搞大数据。但今年,大数据不再是个独立东西,而是在所有趋势分析中,扮演每个在线和移动命题分析的一个组成部分。
你需要完全收集和利用数据中展现的Insights,用它武装,以提供更个性化的体验、上下文感知服务,及有针对性的信息,实现只对某个顾客“我”提供服务的效果。
趋势六:可穿戴突破(Wearables breakthrough)
去年,智能手表和可穿戴设备被媒体和分析师广泛预测,但你周围,到底有多少人戴这些东西?很少。
2015年,情况可能有突破,原因与“苹果手表”和其它可穿戴设备与传感器的结合有关。这些设备将被使用,不仅仅因为有用,也因为用户的流行和时尚声明需要。我们也将看到其它可穿戴设备和传感器,领域涉及健康监测及家庭控制设备等。
趋势七:Nearables, sensors & invisibles
我们周围到处是对我们行为一举一动和健康状态的追踪,它们是蓝牙信标,Wifi 热点,及其它你不会活跃连接或你手机自己自动连接的技术,比如进入快餐店时,有一定游客使用频率的交通运输公司。
他们正寻找什么产品和服务?通常保持登陆多久?一天中多长时间?通常是一周中的哪天?以及其它Insights。
现在硬件很便宜,所以确保你的移动团队能获取到最新设备和传感器,然后去测试和理解机会。你要留出时间和预算去做实验,评估有哪些方式可以收集到客户信息,从现有的WiFi热点,同时考虑添加其它类型的传感器,如蓝牙信标来提高数据采集。
趋势八:医疗保健获得大飞跃,其次是大规模隐私关注(Healthcare takes a big mobile leap followed by even bigger privacy concerns)
由于收入大幅增长和生产率提高,在大型制药公司和医疗初创企业的破坏性创新实践方面,我们将继续看见大的投资和创新,虽然管理规则仍将扮演阻碍角色,但立法者将与业界紧密合作。
另一面,目前消费者领域的技术炒作,和医生想要什么存在很大差距。有用的数据,及App在何种程度上能真正改变行为,技术何种程度上能帮助监测疾病,与患者进行远程通信,和对数据进行汇总分析方面,医生们对于这些普遍怀疑。同时,数据收集也带来巨大隐私隐患,隐私权拥护者对此非常关心,正强调安全分析,由此也可能导致新监管发生。
趋势九:移动客户忠诚度和移动支付齐头并进(Mobile Loyalty & Payments go hand in hand)
2014年最成功的忠诚度和移动支付 App,不是来自零售商、运营商、金融机构或设备制造商,而是来自像星巴克、亚马逊和Uber这样的革新驱动的公司,他们已成功将支付和忠诚度策略整合进自己服务,并成为我们日常生活的一部分。
2014年,星巴克创造了90% 的基于物理位置的移动支付,这些既非使用NFC,也不是通过蓝牙支付完成,星巴克的成功,是基于消费者的信用卡细节给到星巴克的价值,以及星巴克提供给消费者的便利细节,和消费者由此返回的对星巴克品牌忠诚度收益。
苹果支付,将在移动商务领域作为一个App 内置支付方式获得成功,但作为一个信用卡替代者,这个过程仍将十分缓慢。
根据二八原则,你未来80%利润,将来自你20%客户,而一个公司要把一个东西卖给一个新用户所付出的努力,是卖给老客户的六倍,很明显,忠诚度和支付行为密切相关。
这意味:退后一步,你要想想是什么让你客户回来,更频繁使用你服务。通过用户测试和数据发现真正对用户便利的个人经验,亚马逊和星巴克在这方面是超级成功的。
趋势十:移动开发变得更简单,也更复杂(Mobile Services development becomes easier and a lot more complex)
据IDC预测,企业级移动App开发将在2015年增长一倍,这也导致各大公司包括创业公司发布大量新的有用工具,像基于云的后端、新跨平台工具、拖放开发工具及插件等,而它们都促成App开发更容易。
但这是否意味App开发,可以更快、更便宜和更简单了呢?不是,Android 和Windows、新设备尺寸、安全威胁、业务流程改造,和旧后端系统的发展,实际上是让事情更复杂了。
对很多公司来说,移动开发项目开始像大型 IT 项目,需要大型团队完成,并且失败率迅速上升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12