
用大数据做微贷的几个难题_数据分析师
比起大数据技术,用大数据思维去指导小微授信工作,重视信贷员在调查中的关键作用,以实现“半自动”式的授信发放工作或许才是努力方向。
Q: 大数据做微贷有哪些难题?
A: 数据缺失,信用评估难
前一段时间,中国首家网络银行“微众银行”开业,当着李克强总理的面,“微众银行”用人脸识别技术和大数据分析,给一个卡车司机放了3.5万元贷款。
微众银行靠着这件事情赚足了脸面,原因不仅仅是国家领导人前来撑场面,更重要的是微众银行这笔贷款是通过“大数据”分析发放的,相比于传统贷款流程繁琐,折磨客户又折磨信贷员,微众银行通过数据分析,在数秒之内就审核通过了贷款,省时省力又省事。
在众人惊叹大数据技术的威力时,笔者对大数据能否真正搞定小微贷款却持怀疑态度,结合笔者几年的小微贷款工作实践,来说说大数据做小微贷款的几个难题。
第一个难题——“数据缺失”
大数据在小微客户身上的应用,是要建立在小微客户“数据源”基础上的,没有数据源,“大数据”分析就成了打空枪,而小微企业本身所具备的特点会让我们难以收集相关数据。
1、小微企业经营灵活
小微企业所从事的生意有几个特点:进入门槛低、规模小、经营形式灵活,在实践中,也因为这些特点并不需要办太多的营业手续,再加上这几年政府为激发小微企业的活力,对小微企业愈加重视,在制度上和政策上进一步给“小微客户”减负,大部分的小微客户就是靠一张营业执照就开业,“一元公司”现在也成为了现实。生意手续“含金量”的降低,这让大数据分析中的最关键的一步,也是第一步:核实生意主体,成了一个难题。光靠一张“纸”,光靠网上的企业信息公示系统,这种纯粹通过线上的方式去核实生意存在与否,以及生意的归属,笔者估计,别说网络银行不放心,银监会也是不会放心的。
2、小微企业经营模式简单
小微企业生意的经营模式非常简单,第三方机构参与的程度较低,因此金融机构能借助的有价值的第三方信息很少。以一个夫妻开的小超市为例,超市平时交易量大、交易金额低,而且以现金交易为主,所以通过银行流水不能反映他们的经营状况;因为是政策照顾的对象,几乎免税,所以税务局的交税信息也没有什么价值;没有大的积蓄,之前也没贷过款,所以很少和银行打交道,在央行[微博]的信用记录几乎为零,生活用电用水和生意用电用水夹杂在一起,每天的生意凭证是只有他们自己能看懂的流水账,因此几乎找不到靠谱的、有利用价值的信息凭证。所以如果金融机构用大数据去分析没有公信力数据的小微客户,几乎无从下手。
3、小微客户的素质较低
小微客户的文化水平相对较低,“互联网生活”的参与程度也较低,对于他们来说,互联网仅仅就是聊聊QQ、微信,斗斗地主,然后转发两篇养生文章,淘宝购物也是浅尝辄止。网上热议的,也是微众银行宣称的要通过“社交数据”去发放贷款,在小微客户这里是失灵的。
笔者曾亲自尝试过使用以社交数据发放贷款的代表“闪银”,它的界面很简单,要求用户关联自己的“微博、人人网、学历认证、银行卡”,然后经过三分钟的后台分析就得出一个信用额度。“闪银”后台是怎样的数据模型,如何做的数据分析,我们并不知道,但得出了一个结论,这些“稀奇”的事物,小微客户是“不感冒”的,如果执意要通过分析小微客户的社交数据来判断他的授信额度,就好像要通过老农民爱喝哪款红酒来判断他的素质水平一样,只怕意义不大。
第二个难题——“信用评估难”
“信用”评估是大数据分析和传统调查分析都难解的命题:
1、小微客户信用记录少
无论是线上还是线下审批,客户的信用纪录都是是否予以小微客户授信的重要参考。这几年政府政策的引导,各家银行推出的小微贷款产品,让小微企业多了和银行打交道的机会,但仍未让小微企业在央行征信报告上展现足够的信用状况。别说能达到满足大数据分析所需要的量,就是在传统金融机构对小微客户的授信分析中,也让银行费心不少,比如就是因为小微客户稀少的信用积累,逼迫银行只能通过强化担保来把控小微客户的还款意愿,而不愿意去冒险尝试纯信用贷款。
以国内小微贷领域的佼佼者包商银行为例,包商银行掌握先进信贷技术和高素质信贷员队伍,也仅能做到“无需抵押,也能贷款”,这里虽然无需抵押担保,但需要客户提供严格的保证担保,而即便对客户发放了无需担保的信用贷款,也会在金额和期限上做出严格限定,客户范围也基本仅限于和包商银行合作多年,信用记录良好的客户。
2、小微客户信用记录差
在笔者所接触到的小微客户中,其信用记录呈现了两个极端,要不就是“白户”,从未和任何银行打过任何交道,没办过贷款,没办过信用卡,甚至没在银行开过借记卡。要不就是征信记录很难看,多次逾期。但逾期也分“恶意”与“非恶意”,信用记录难看的那一部分,也不完全是“黑户”,有的可能是被银行怂恿,办了信用卡却不会用,于是信用记录抹了黑;有的可能是侥幸办了房贷,却被复杂的利率调整所困扰,征信记录多了些不疼不痒但很碍事的逾期记录。
而大数据分析是机器判断,会更相信“公正权威“的征信报告,而不会去听小微客户去讲信用记录背后的故事,因此如果单纯通过信用记录来判断客户的信用意识,是不是就有些武断?而银行在小微授信业务中,银行机构的代表信贷员则不会那么死板,面对客户的不良信用,一定会给客户自证清白的机会,恰巧银行调查小微客户是让信贷员实地调查,借着实地调查的机会,信贷员也会详细了解不良信用记录的成因,成熟的去判断客户的信用意识,给客户一个解释的机会。
3、小微客户信用意识差
强化客户的信用意识是授信业务中的重要环节,尤其对于没有贷款经验的小微客户来说。另外,小微客户的信用意识差是业内共识,毕竟这部分群体一直游离在银行的主流客户群体之外,没见过“世面”,也不知道信用记录的重要性,因此在银行调查小微客户中,借着实地调查,和客户面对面交流的机会,来给客户灌输维护良好信用意识的重要性,是工作必备。
同时,银行也考虑到,光灌输意识是不够的,还需要有一个强力里的保障,那就是信贷员。信贷员是银行的代表,也是银行品牌形象、法律规定和信用道德评判的具化。对于客户来说,面前活生生的讲感情的信贷员,比起客户的自我约束、银行品牌感化,甚至法律的威慑更加有力。如果读者当中有做过小微贷款,有追过逾期经历的,都会认同我的说法,和客户讲法律、讲信用意识,都不如和客户“讲关系”、“讲面子”有效果。
如上文从“数据难题”和“信用难题”两个方面分析所得出的结论,数据的缺失、数据收集渠道的缺失,使得目前热议的完全依赖“大数据”快速发放贷款的模式,在小微客户身上仍然难以落实,大数据技术只能是“看上去美好”。
而从一个亲身接触客户,切身了解小微贷款其中艰难的信贷员角度出发,笔者认为比起大数据技术,用大数据思维去指导小微授信工作,重视信贷员在调查中的关键作用,以实现“半自动”式的授信发放工作或许才是努力方向。
以上就是笔者的对于用大数据做小微贷款难题的几点认识,因为都是小微信贷工作的经验之谈,所以表述多于主观,缺乏准确数据的支撑。但对于大家客观看待大数据在小微信贷领域的应用,实际了解其中的难处,应该能给大家提供些思路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23