
炙热的大数据 当头一盆冰桶_数据分析师培训
相比国内绝大多数乏善可陈的会议,百度新闻&百家联合举办的BIG Talk大会算是在正式与有料方面都可圈可点的活动。继上次虚拟现实技术大家一边倒的认为未来5年会有大发展前途一片光明的论点不同。第三期的可穿戴、大数据演讲为我们泼了一份冷水:我们现在的大数据还处于原始的初级阶段,而现有可穿戴目项目跟大数据更是毫无关系。
本次“大数据与可穿戴项目”演讲者是美国MIT麻省理工大学教授Alex Pentland。这位全球权威大数据与可穿戴泰斗级人物已经做了几十年的研究,在大数据的采集以及数据应用规范方面有非常深的造诣。而Pentland的学生有的发明Google Glass,有的做面部识别项目,有的则成为大数据专家。按理说这类泰斗级任务上台会为我们讲述一番大数据的光明前景。然而Alex却在演讲中表明目前的大数据还属于初级甚至原始的状态,可穿戴更是还没有开始。
大数据:商业公司的原罪
在Pentland看来,完整的大数据应用应该包括数据采集、存储、分析、应用等环节。而现在的技术发展来看这些大数据还处于原始采集阶段。大数据本身是具备极强的两面性,一部分数据属于高价值的核心数据,而一部分属于低价值甚至无价值的冗杂数据。一方面核心数据的采集分析整理确实能为企业带来新的方向,而另一方面冗杂数据却成为企业的包袱。大数据本身没有任何意义,必须要像精炼是油一样提纯分类才能产生价值。
另外Pentland一针见血的指出:大数据时代是要以个人为主体,以个人为核心,为个人服务,被个人所控制。所以基于此大数据实际上不应该由以盈利为目的的商业组织获得。
目前的商业公司在大数据放买那远没有达到存储、分析的层面,大多数都是一把抓的全部采集,然后讲用户自主数据和服务数据混合,企图先做到战略上无过这一步。而大数据实际上算得上是数据时代用户的一个复制,是要有高度隐私保护的,很难想象落在商业组织的后果。
红叔简单的罗列了一下对于个人的大数据,个人需要具有四种权力:1被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集。2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意。3)审核:在这里主要是指政府法律机构负责审核。4)撤销权:个人随时可以销毁自己的个人数据资产。
简单的来说就是这是我个人的数据,只能由我掌控,你想知道什么需要经过我的同意。为此Pentland提出了一个商店的模式,所有的个人数据都在这里存储,在面对外部访问请求的时候,给出的最终答案,而不是数据本身,从而保证数据安全。
这个数据观点很类似红叔今年1月份听德意志银行战略部负责任蔡凯龙演讲时候的小数据时代,两者各有精妙之处:
小数据(iData), 指的是围绕个人为中心全方位的数据,及其配套的收集,处理,分析,和对外交互的综合系统。人的一举一动,一分一秒,产生的数据,包括生活习惯,身体状况,社交,财务,喜好,情绪,行为的等等,全部被收集和利用和分析,并对外形成一个富有个人色彩的数据系统,统一执行交换数据,保护隐私等多项对外功能。
总之,大数据在目前还处于原始阶段,Pentland虽然是该方面专家缺对此持保守态度。大数据的真正爆发期还没有开始。
可穿戴产品:不仅仅是数据收集
Pentland教授虽然是可穿戴之父,早在1995年就已经设计出了Google GLASS原型Pentland Project,不过在现在的可穿戴产品方面更持否定态度,Pentland认为现在的产品跟大数据没什么关系,并且精确度也不够。
目前的可穿戴设备绝大部分(红叔觉得是所有)都支持健康管理、运动管理等。但实际可穿戴设备只告诉我们跑了多少步,运动了多少。但是这些数据本身并没有一定点的意义。厂商还不能通过可穿戴设备实现和大数据结合后的分析和应用。
比如说智能手环可以记录心率,在人体大脑皮层中很多点数据可以记录。当人们使用可穿戴设备的时候,可以更好理解当一个小孩哭的时候发生了什么,他兴奋的时候怎么了。大数据让人更微妙,甚至可用在打牌上,获得更好的赢率,有人拿到牌会故意虚张声势,但可穿戴设备的数据将暴露他实际拿到的牌,类似的也会暴露谈判桌前人们的情感表现。而男女约会的时候,很多时候你都不需要知道他们到底说了什么,看动作就知道两人的态度。这些都是大数据分析之后的结果。
很遗憾,目前没有任何一个可穿戴设备可以实现这些功能。他们还在执着的几乎你跑了几步,运动了多少。
所以Alex Pentland虽然是可穿戴之父,自己却从不带任何可穿戴产品。“现在没有一款产品让我认为是真正的可穿戴产品”他说。
在目前大数据舆论下,Alex Pentland的态度让我们在狂热之下感受到了一丝寒意:也许泡沫暂时蒙蔽了我们的双眼,也许短暂的热情被我们误认为是用户的需求,可穿戴的春天还没有来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08