
炙热的大数据 当头一盆冰桶_数据分析师培训
相比国内绝大多数乏善可陈的会议,百度新闻&百家联合举办的BIG Talk大会算是在正式与有料方面都可圈可点的活动。继上次虚拟现实技术大家一边倒的认为未来5年会有大发展前途一片光明的论点不同。第三期的可穿戴、大数据演讲为我们泼了一份冷水:我们现在的大数据还处于原始的初级阶段,而现有可穿戴目项目跟大数据更是毫无关系。
本次“大数据与可穿戴项目”演讲者是美国MIT麻省理工大学教授Alex Pentland。这位全球权威大数据与可穿戴泰斗级人物已经做了几十年的研究,在大数据的采集以及数据应用规范方面有非常深的造诣。而Pentland的学生有的发明Google Glass,有的做面部识别项目,有的则成为大数据专家。按理说这类泰斗级任务上台会为我们讲述一番大数据的光明前景。然而Alex却在演讲中表明目前的大数据还属于初级甚至原始的状态,可穿戴更是还没有开始。
大数据:商业公司的原罪
在Pentland看来,完整的大数据应用应该包括数据采集、存储、分析、应用等环节。而现在的技术发展来看这些大数据还处于原始采集阶段。大数据本身是具备极强的两面性,一部分数据属于高价值的核心数据,而一部分属于低价值甚至无价值的冗杂数据。一方面核心数据的采集分析整理确实能为企业带来新的方向,而另一方面冗杂数据却成为企业的包袱。大数据本身没有任何意义,必须要像精炼是油一样提纯分类才能产生价值。
另外Pentland一针见血的指出:大数据时代是要以个人为主体,以个人为核心,为个人服务,被个人所控制。所以基于此大数据实际上不应该由以盈利为目的的商业组织获得。
目前的商业公司在大数据放买那远没有达到存储、分析的层面,大多数都是一把抓的全部采集,然后讲用户自主数据和服务数据混合,企图先做到战略上无过这一步。而大数据实际上算得上是数据时代用户的一个复制,是要有高度隐私保护的,很难想象落在商业组织的后果。
红叔简单的罗列了一下对于个人的大数据,个人需要具有四种权力:1被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集。2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意。3)审核:在这里主要是指政府法律机构负责审核。4)撤销权:个人随时可以销毁自己的个人数据资产。
简单的来说就是这是我个人的数据,只能由我掌控,你想知道什么需要经过我的同意。为此Pentland提出了一个商店的模式,所有的个人数据都在这里存储,在面对外部访问请求的时候,给出的最终答案,而不是数据本身,从而保证数据安全。
这个数据观点很类似红叔今年1月份听德意志银行战略部负责任蔡凯龙演讲时候的小数据时代,两者各有精妙之处:
小数据(iData), 指的是围绕个人为中心全方位的数据,及其配套的收集,处理,分析,和对外交互的综合系统。人的一举一动,一分一秒,产生的数据,包括生活习惯,身体状况,社交,财务,喜好,情绪,行为的等等,全部被收集和利用和分析,并对外形成一个富有个人色彩的数据系统,统一执行交换数据,保护隐私等多项对外功能。
总之,大数据在目前还处于原始阶段,Pentland虽然是该方面专家缺对此持保守态度。大数据的真正爆发期还没有开始。
可穿戴产品:不仅仅是数据收集
Pentland教授虽然是可穿戴之父,早在1995年就已经设计出了Google GLASS原型Pentland Project,不过在现在的可穿戴产品方面更持否定态度,Pentland认为现在的产品跟大数据没什么关系,并且精确度也不够。
目前的可穿戴设备绝大部分(红叔觉得是所有)都支持健康管理、运动管理等。但实际可穿戴设备只告诉我们跑了多少步,运动了多少。但是这些数据本身并没有一定点的意义。厂商还不能通过可穿戴设备实现和大数据结合后的分析和应用。
比如说智能手环可以记录心率,在人体大脑皮层中很多点数据可以记录。当人们使用可穿戴设备的时候,可以更好理解当一个小孩哭的时候发生了什么,他兴奋的时候怎么了。大数据让人更微妙,甚至可用在打牌上,获得更好的赢率,有人拿到牌会故意虚张声势,但可穿戴设备的数据将暴露他实际拿到的牌,类似的也会暴露谈判桌前人们的情感表现。而男女约会的时候,很多时候你都不需要知道他们到底说了什么,看动作就知道两人的态度。这些都是大数据分析之后的结果。
很遗憾,目前没有任何一个可穿戴设备可以实现这些功能。他们还在执着的几乎你跑了几步,运动了多少。
所以Alex Pentland虽然是可穿戴之父,自己却从不带任何可穿戴产品。“现在没有一款产品让我认为是真正的可穿戴产品”他说。
在目前大数据舆论下,Alex Pentland的态度让我们在狂热之下感受到了一丝寒意:也许泡沫暂时蒙蔽了我们的双眼,也许短暂的热情被我们误认为是用户的需求,可穿戴的春天还没有来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22