京公网安备 11010802034615号
经营许可证编号:京B2-20210330
HR迎来大数据时代 三方面应用提升招聘价值_数据分析师培训
大数据这个词,虽然和互联网思维一样,已经泛滥到被人嫌弃的状态,但不可否认的是,在未来两年甚至五年里,互联网和软件业将被技术创新和应用激发出无限可能性。
招聘行业在2014年被热钱包围了——垂直和移动招聘网站大幅吸金,招聘网站间再掀广告大战,形形色色的猎头软件接踵面世,推崇技术创新的招聘软件前仆后继,无不在向HR传递一个信息:大数据时代真的来了。
招聘是一个极其缺乏数据的领域,HR们从未像现在这样需要用数据来支持自己的功能和证明自己的价值。数据时代对他们有两点价值:一是决策支持。(CDA数据分析师培训)各个渠道的效果、面试官的配合程度、校招学校站点的选择、HR的招聘能力,都可以通过数据分析来判断或决定,不再只靠拍脑袋了。二是证明招聘团队的绩效表现。招聘在用人部门看来往往是非零即一的事情,但其实招不到合适的人原因很复杂,需要深入分析,然而长期缺乏用数据说话的工作方式让HR在组织内部缺少话语权。
新事物总是容易被盲目炒作。大数据之所以流行,是因为它被各个行业寄予了太多希望,但现实中往往是实践太少,盲目畅想太多。在招聘领域也是一样,隔几周就能看到一篇大数据在人力资源管理领域应用的文章,但详细阅读则发现对于实质性的内容语焉不详。这样的分析越多,HR们就会对大数据抱有越大的期待,但同时也会发现可落地的实践越少。笔者客观地分析,从技术发展的角度和实用性的角度来看,大数据在招聘领域有三种应用会成为主流。
一、人才匹配
大数据最典型的应用场景是“推荐”。传统的简历推荐通常让HR设定一些条件,例如学历、工作年限、所属行业、期望薪酬等,系统根据这些条件的匹配度(其实是满足条件最多)把候选人排序,这种推荐的实质是搜索。根据心理学家的研究,候选人筛选是一个复杂过程,即使提前设定好硬性筛选条件,HR也难免因为综合考虑而放弃原本的坚持,此时大数据推荐就可以发挥价值了。基于大数据的推荐算法是通过猜测HR筛选简历的原因来建立推荐模型,并且会随着HR不断进行筛选的动作来持续优化模型,再从人才库推荐满足条件的候选人出来。HR的操作行为越多,招聘系统的推荐模型就越准确,从而通过人才挖掘来真正发挥人才库的价值,同时也能大幅降低招聘成本并提升招聘效率。
二、预测招聘效果
什么职位难招?中级职位要多久才能招到位?哪个渠道能提供更多的销售人才?这些基本的招聘问题HR心中会有大概的答案。但大数据分析可以帮助HR更快地回答这些问题,并且把结论量化,从而快速支持决策。原因就在于,HR在招聘中产生的数据能够被记录下来并形成预测模型。举例来讲,当HR多次招聘UI设计师后,再次招聘同一职位时,大数据算法可以根据HR的能力、面试官的响应速度、投放的渠道、市场人才稀缺的程度等因素,预测招聘周期,于是不用再被用人部门牵着鼻子走了。类似的大数据应用还会出现在渠道有效性分析、猎头能力分析、雇主品牌竞争力中。更有价值的是,当数据在更开放的行业环境中被共享时,招聘效果的预测将会更加准确。
三、发现招聘过程规律
不少组织的HR现今还在采用手工记账的方式记录招聘过程的信息,不及时、也难以保证数据准确。对此大数据也有相应的解决方案。例如,在每年一次校园招聘中,有些企业会在每天接近午夜十分通过微信平台发布校招广告,问其原因,答曰分析显示毕业生在那个时段使用手机访问企业微信号的行为最集中。当然还有更复杂的信息,如:学生填写哪些信息最困难,是否能找到关注的内容,面试到场率为什么较低,offer毁约率低的群体都存在什么特点,测评结果与面试评价之间的相关性有多大……当数据完整时,分析模型能够自动帮助HR发现规律,并寻找优化招聘过程的契机。
一切看起来都很美。我相信大数据是招聘领域的重大发展趋势,它确实可以把HR从招聘的黑箱中解救出来。但是,想要享用大数据带来的价值,HR们不得不正视眼前的挑战:大部分组织的招聘团队仍处于极度缺乏数据或者数据可用性很差的状况中;招聘团队自己不具备大数据处理能力,数据记录成问题;数据记录系统的安全性较低,可能导致重要招聘数据泄露;缺乏数据分析人才,即使有了数据,也无法有效规划和利用。
基于此,保证招聘过程数据能够得到完整记录,同时启用有效的数据分析工具是HR走向大数据时代的第一步。在招聘过程中应用好大数据,将成为HR事半功倍的前提。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24